УДК 539.124

РЕВИЗИЯ КУМУЛЯТИВНЫХ СПЕКТРОВ БЕТА-ЧАСТИЦ ПРОДУКТОВ ДЕЛЕНИЯ ИЗОТОПОВ 235 U, 239 Pu И 238 U ПО РЕЗУЛЬТАТАМ ИЗМЕРЕНИЙ ОТНОШЕНИЯ СПЕКТРОВ 235 U/ 239 Pu

© 2025 г. В. И. Копейкин¹⁾, Д. В. Попов^{1),2),*}

Поступила в редакцию 04.10.2024 г.; после доработки 04.10.2024 г.; принята к публикации 15.10.2024 г.

На базе новых измерений отношения кумулятивных спектров β-частиц 235 U/ 239 Pu, выполненных в НИЦ "Курчатовский институт" (КИ), проведены ревизия и уточнение кумулятивных спектров β-частиц продуктов деления 235 U, 239 Pu и 238 U. Представленные спектры β-частиц 235 U и 239 Pu КИ сопоставлены с аналогичными спектрами группы ILL, а спектр β-частиц 238 U КИ — с данными измерений Технического университета Мюнхена (TUM). Подтверждено, что отношение спектров β-частиц 235 U/ 239 Pu группы ILL ошибочно завышено на $\approx 5.4\%$.

Ключевые слова: кумулятивные спектры, β -частицы, 235 U, 239 Pu, 238 U

DOI: 10.31857/S0044002725010016, EDN: GSZDYI

1. ВВЕДЕНИЕ

Точное знание спектра реакторных $\bar{\nu}_e$ является необходимым условием правильной интерпретации результатов нейтринных экспериментов на ядерных реакторах. В области энергий, превышающих порог процесса обратного β -распада ОБР ($E_{\rm thr}=1.8~{
m M}{
m 3B}$)

$$\bar{\nu}_e + p \rightarrow n + e^+,$$
 (1)

служащего основным инструментом в нейтринных реакторных экспериментах, спектр $\bar{\mathbf{v}}_e$ наиболее распространенных ядерных реакторов ВВЭР (PWR) формируется от β -распадов продуктов деления изотопов топлива 235 U, 239 Pu, 238 U и 241 Pu. При этом вклад в полное число делений и энерговыделение в активной зоне первых трех ядер 235 U, 239 Pu, 238 U составляет 95%. Наиболее точно кумулятивные спектры $\bar{\mathbf{v}}_e$ делящихся изотопов реконструируются методом конверсии соответствующих экспериментальных спектров β -частиц.

Тщательное моделирование спектров \bar{v}_e продуктов деления 235 U, 239 Pu и 241 Pu было проведено в 2011 г. [1,2] (Huber-Mueller, HM-модель) по данным уникальных измерений кумулятивных спектров β -частиц этих изотопов, выполненных в 1980-ых гг. на пучке тепловых нейтронов группой института Лауэ—Ланжевена (ILL) [3—7].

Спектр $\bar{\nu}_e$ ²³⁸U HM-модели был получен с помощью расчета [2]. Из-за трудностей измерения кумулятивного спектра β -частиц продуктов деления ²³⁸U на пучке быстрых нейтронов эксперимент был выполнен лишь в 2013 г. для части диапазона спектра β -частиц, и по нему востановлен соответствующий участок $\bar{\nu}_e$ -спектра ²³⁸U [8]. Особенность этого опыта состоит также в том, что абсолютная калибровка спектра β -частиц ²³⁸U опирается на данные калибровки спектра β -частиц ²³⁵U группы ILL.

Оказалось [9], что измеренный выход реакции ОБР (1) меньше ожидаемого по НМ-модели на $\approx 5.7\%$. Эта аномалия ("Reactor Antineutrino Anomaly") спустя десятилетие получила объяснение после первых измерений на исследовательском реакторе ИР-8 НИЦ "Курчатовский институт" (КИ) отношения кумулятивных спектров β -частиц 235 U/ 239 Pu [10], проведения на этой базе анализа и нахождения новых конверсионных спектров $\bar{\nu}_e$ 235 U и 238 U [11]. В настоящей статье приведены обновленные данные отношения кумулятивных спектров β -частиц 235 U/ 239 Pu, и на их основе получены кумулятивные спектры β -частиц и $\bar{\nu}_e$ для 235 U, 239 Pu и 238 U.

2. ИЗМЕРЕНИЕ ОТНОШЕНИЯ КУМУЛЯТИВНЫХ СПЕКТРОВ 235 U/ 239 Pu

Суть проводимого в КИ эксперимента подробно описана в работе [10] и заключается в следующем. Мишени урана и плутония размером $2 \times 3 \text{ cm}^2$ и толщиной 39 мг/см 2 в тонких защит-

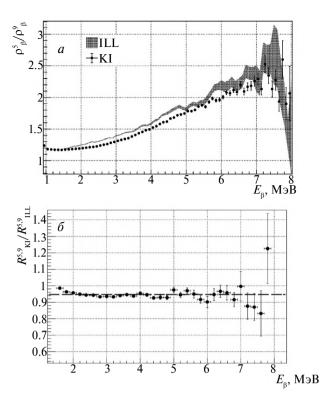
¹⁾ НИЦ "Курчатовский институт", Москва, Россия.

²⁾ НИЯУ МИФИ, Москва, Россия.

^{*} E-mail: Popov DV@nrcki.ru

ных оболочках прикреплены вдоль обода вращающегося (10 об/с) диска (диаметр 60 см) из дюралюминия. Мишени занимают по 1/3 окружности диска. На оставшейся трети размещаются пустые оболочки мишеней для измерения фона. С одной стороны от центра диска проводится облучение пучком тепловых нейтронов мишеней урана и плутония и пустых оболочек. С противоположной стороны с помощью низкофонового β-спектрометра осуществляется регистрация β-частиц от мишеней и регистрация фона. Связь скорости счета регистрируемых спектрометром β -частиц n_{β} [1/c] и числом β -частиц, испускаемых в расчете на один акт деления $\rho_{\rm B}$ [1/дел], для мишеней 235 U или 239 Pu в интервале энергий $E, E + \Delta E$, можно описать одним выражением

$$n_{\beta}^{5,9} = \varepsilon \, \sigma^{5,9} F N^{5,9} \, \rho_{\beta}^{5,9},$$
 (2)


где $n_{\beta}^{5,9}$ обозначает скорость счета регистрируемых β -частиц от 235 U или 239 Pu, ϵ — эффективность регистрации β -частиц, а произведение $\sigma^{5,9}FN^{5,9}$ [1/c] выражает число делений в секунду, где σ — сечение деления ядер нейтронами, F — плотность потока нейтронов, N — число ядер в мишенях. Особенностью эксперимента [10] является то, что работа в своей основной части сводится к относительным измерениям. Это позволяет измерить отношение спектров $\rho_{\beta}^{5}/\rho_{\beta}^{9}$ с высокой точностью, поскольку, как видно из записи (2), не возникает проблем с абсолютной нормализацией этого отношения.

Обновленные данные отношения спектров β -частиц $R^{5,9} = \rho_{\beta}^5/\rho_{\beta}^9$ КИ в сравнении с аналогичными данными ILL представлены на рис. 1. В целом они подтверждают наш результат, полученный ранее [11], — кривая ILL лежит выше кривой КИ на $\approx 5.4\%$. В жесткой области спектра (вблизи ≈ 8 МэВ) различия заметны, лежат в пределах ошибок измерений и, вероятно, связаны с недостатком статистики.

3. КУМУЛЯТИВНЫЕ СПЕКТРЫ β-ЧАСТИЦ ²³⁵U, ²³⁸U И ²³⁹Pu

Для нахождения кумулятивных спектров β-частиц делящихся изотопов и интерпретации полученного результата была использована следующая информация:

1. Измерения формы спектра β -частиц 235 U, проведенные группой ILL в серии экспериментов [3–5], хорошо совпадают в пределах статистической ошибки $\approx 1\%$ в основной части спектра [7]. При этом специфи-

Рис. 1. Отношение кумулятивных спектров β -частиц 235 U/ 239 Pu, измеренных группой КИ (НИЦ "Курчатовский институт") и группой ILL (институт Лауэ—Ланжевена). a — отношение спектров β -частиц КИ и ILL, b — сопоставление отношения спектров КИ настоящей работы и отношения спектров ILL (штриховая линия соответствует среднему значению 0.946).

ка завершающего измерения ILL спектра β -частиц 235 U [5] состояла в том, что калибровка спектра велась при стандартной мощности реактора (W=57 MBT), а форма спектра для уменьшения фона измерялась при пониженной мощности (W=4 MBT) и с существенно более толстой мишенью 235 U. В этой же работе [5] при нормализации спектра (ρ_{β}^{5})_{ILL} было учтено отклонение сечения деления 235 U от закона 1/v, что в работе [3] было проигнорировано. Это привело к коррекции ранее опубликованного [3] спектра (ρ_{β}^{5})_{ILL} на $\approx 3\%$, что, тем не менее, полностью не объясняет различие нормировок спектров [3] и [5], составившее $\approx 6\%$.

2. В недавно вышедших работах [12, 13] было отмечено, что при нормализации спектра $(\rho_{\beta}^{5})_{ILL}$ в работах [3, 5] группа ILL использовала завышенное на $\approx 10\%$ сечение реакции 207 Pb $(n_{\rm th},\gamma)^{208}$ Pb. При этом в публикации [4] спектра $(\rho_{\beta}^{9})_{ILL}$ калибровка с 207 Pb не упомянута. Используемые группой ILL дан-

ные по другим калибровочным источникам согласуются с современными значениями в пределах ошибок [12].

- 3. В работе [13] с использованием экспериментальных данных по тепловыделению делящихся изотопов и современных ядерных баз данных также отмечена возможная ошибка при нормализации спектра $(\rho_{\rm R}^5)_{\rm ILL}$.
- 4. В эксперименте Daya Bay после многолетнего набора статистики получены выходы σ_f^i [см² дел $^{-1}$] реакции ОБР (1), взвешенные по спектрам антинейтрино ρ_v^i [МэВ $^{-1}$ дел $^{-1}$] продуктов деления изотопов 235 U и 239 Pu [14, 15]:

$$\sigma_f^i = \int \rho_v^i(E_v) \, \sigma_{\text{OBP}}(E_v) \, dE_v, \tag{3}$$

где $\sigma_{\text{ОБР}}(E_{\nu})$ [cм²] — сечение реакции (1) для моноэнергетических $\bar{\nu}_e$. Оказалось, что измеренный выход σ_f^5 существенно меньше предсказанного НМ-моделью, а величины измеренного и ожидаемого выходов σ_f^9 совпадают. Подобный результат получен также коллаборацией RENO [16].

- 5. В работе [17] расчетом выявлена корреляционная зависимость между кумулятивными спектрами β -частиц ρ^i_{β} и антинейтрино ρ^i_{ν} делящихся в реакторе изотопов урана и плутония, где индексы i=5,9,8,1 относятся соответственно к изотопам 235 U, 239 Pu, 238 U и 241 Pu, см. также работы [5,18].
- 6. При исследовании в расчетах [19] метода конверсии была установлена прямая сильная корреляция между отношениями спектров β -частиц $\rho_{\beta}^{5}/\rho_{\beta}^{9}$ и антинейтрино $\rho_{\nu}^{5}/\rho_{\nu}^{9}$ и, как следствие этого, отношением выходов $\sigma_{f}^{5}/\sigma_{f}^{9}$. Это было подтверждено в работе [10] при рассмотрении различных конверсионных моделей спектров реакторных антинейтрино.
- 7. Расчетом установлено, что отношения спектров $\rho_{\beta}^5/\rho_{\beta}^9$ и $\rho_{\nu}^5/\rho_{\nu}^9$, представленные в полных энергиях частиц, в пределах ошибки $\pm 1.5\%$ совпадают; то же относится к $\rho_{\beta}^5/\rho_{\beta}^1$ и $\rho_{\nu}^5/\rho_{\nu}^1$ и т.п. [10, 20–23].

Учитывая представленную информацию, в частности, в пунктах 1-4, следует признать, что кривая $(\rho_{\beta}^5)_{\rm ILL}$ ошибочно завышена на $\approx 5.4\%$ (см. рис. 1). Так как спектр $\bar{\rm v}_e$ 235 U получен путем конверсии спектра β -частиц, то он также должен быть изменен на эту величину (см. пункты 5-7). Это же относится и к спектрам β -частиц и $\bar{\rm v}_e$

 238 U (TUM), нормировка которых основана на нормировке спектра β -частиц 235 U.

Условия измерений отношения кумулятивных спектров β -частиц 235 U/ 239 Pu в проводимом нами эксперименте таковы, что позволяют определить величину $R^{5,9} = \rho_{\beta}^5/\rho_{\beta}^9$ с прецизионной точностью [10]. Надежность и тщательность измерений формы спектра β -частиц 235 U группой ILL также не вызывает сомнений (см. пункт 1). По этим данным легко уточнить спектр β -частиц 239 Pu:

$$(\rho_{\beta}^{9})_{KI} = \frac{(\rho_{\beta}^{5})_{KI}}{R_{KI}^{5,9}} = \frac{(\rho_{\beta}^{5})_{ILL}/1.054}{R_{KI}^{5,9}}.$$
 (4)

В Приложении представлены скорректированные данные по спектрам β -частиц изотопов ²³⁵ U, ²³⁹ Pu, ²³⁸ U в расширенном диапазоне энергий 1.75—8.50 МэВ.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при поддержке Российского научного фонда (проект № 22-12-00219).

СПИСОК ЛИТЕРАТУРЫ

- 1. P. Huber, Phys. Rev. C 84, 024617 (2011).
- 2. Th. A. Mueller, D. Lhuillier, M. Fallot, A. Letourneau, S. Cormon, M. Fechner, L. Giot, T. Lasserre, J. Martino, G. Mention, A. Porta, and F. Yermia, Phys. Rev. C 83, 054615 (2011).
- K. Schreckenbach, H. R. Faust, F. Feilitzsch, A. A. Hahn, K. Hawerkamp, and J. L. Vuilleumier, Phys. Lett. B 99, 251 (1981).
- 4. F. Feilitzsch, A. A. Hahn, and K. Schreckenbach, Phys. Lett. B 118, 162 (1982).
- K. Schreckenbach, G. Colvin, W. Gelletly, and F. Von Feilitzsch, Phys. Lett. B 160, 325 (1985).
- 6. A. Hahn, K. Schreckenbach, W. Gelletly, F. von Feilitzsch, G. Colvin, and B. Krusche, Phys. Lett. B **218**, 365 (1989).
- N. Haag, F. von Feilitzsch, L. Oberauer, W. Potzel, K. Schreckenbach, and A. A. Sonzogni, arXiv: 1405.3501 [nucl-ex].
- 8. N. Haag, A. Gutlein, M. Hofmann, L. Oberauer, W. Potzel, K. Schreckenbach, and F. M. Wagner, Phys. Rev. Lett. **112**, 122501 (2014); arXiv: 1312.5601 [nucl-ex].
- 9. G. Mention, M. Fechner, Th. Lasserre, Th. A. Mueller, D. Lhuillier, M. Cribier, and A. Letourneau, Phys. Rev. D 83, 073006 (2011).
- В. И. Копейкин, Ю. Н. Панин, А. А. Сабельников, ЯФ 84, 3 (2021) [Phys. At. Nucl. 84, 1 (2021)].
- 11. V. Kopeikin, M. Skorokhvatov, and O. Titov, Phys. Rev. D **104**, L071301 (2021).
- 12. A. Onillon and A. Letourneau, in *Proceedings of the Applied Antineutrino Physics 2018* (2019); arXiv: 1911.06834 [hep-ex].

- 13. A. A. Sonzogni, R. J. Lorek, A. Mattera, and E. A. McCutchan, Phys. Rev. C **108**, 024617 (2023).
- 14. F. P. An *et al.* (Daya Bay Collab.), Phys. Rev. Lett. **118**, 251801 (2017); arXiv: 1704.01082 [hep-ex].
- 15. D. E. Jaffe *et al.* (Daya Bay Collab.), arXiv: 2106.07700 [hep-ex].
- 16. G. Bak *et al.* (RENO Collab.), Phys. Rev. Lett. **122**, 232501 (2019); arXiv: 1806.00574v4 [hep-ex].
- 17. А. А. Боровой, В. И. Копейкин, Л. А. Микаэлян, С. В. Толоконников, ЯФ **36**, 400 (1982).
- А. И. Афонин, С. Н. Кетов, В. И. Копейкин, Л. А. Микаэлян, М. Д. Скорохватов, С. В. Толоконников, ЖЭТФ 94, 1 (1988).
- 19. A. C. Hayes, G. Jungman, E. A. McCutchan, A. Sonzogni, G. Garvey, and X. Wang, Phys. Rev. Lett. **120**, 022503 (2018); arXiv: 1707.07728 [nucl-th].
- 20. P. Vogel, G. K. Schenter, F. M. Mann, and R. E. Schenter, Phys. Rev. C **24**, 1543 (1981).
- 21. H. V. Klapdor and J. Metzinger, Phys. Lett. B **112**, 22 (1982).
- 22. В. Г. Алексанкин, С. В. Родичев, П. М. Рубцов и др., *Бета- и антинейтринное излучение радиоактивных ядер* (Энергоатомиздат, Москва, 1989).
- 23. В. И. Копейкин, ЯФ **75**, 165 (2012) [Phys. At. Nucl. **75**, 143 (2012)].

ПРИЛОЖЕНИЕ

Кумулятивные спектры β -частиц ρ_{β} [МэВ $^{-1}$ дел $^{-1}$] продуктов деления 235 U, 239 Pu и 238 U КИ. Приведены только статистические (CL = 68%) ошибки

E_{β} , МэВ	$ ho_{eta}^{5}$	$\delta_{eta}^5,\%$	$ ho_{eta}^{9}$	$\delta^9_eta,\%$	$ ho_{eta}^{8}$	$\delta_{eta}^{8},\%$
1.75	1.08	0.2	9.07×10^{-1}	0.2	1.37	≈3
2.00	8.84×10^{-1}	0.2	7.39×10^{-1}	0.2	1.21	≈3
2.25	7.32×10^{-1}	0.2	6.03×10^{-1}	0.3	1.05	≈3
2.50	6.01×10^{-1}	0.2	4.88×10^{-1}	0.3	8.88×10^{-1}	3.2
2.75	4.95×10^{-1}	0.2	3.92×10^{-1}	0.3	7.15×10^{-1}	3.0
3.00	4.02×10^{-1}	0.2	3.08×10^{-1}	0.3	5.88×10^{-1}	2.4
3.25	3.21×10^{-1}	0.2	2.39×10^{-1}	0.3	4.79×10^{-1}	2.3
3.50	2.54×10^{-1}	0.3	1.82×10^{-1}	0.4	3.86×10^{-1}	2.4
3.75	2.01×10^{-1}	0.3	1.38×10^{-1}	0.4	3.07×10^{-1}	2.4
4.00	1.55×10^{-1}	0.3	1.03×10^{-1}	0.5	2.42×10^{-1}	2.7
4.25	1.19×10^{-1}	0.3	7.51×10^{-2}	0.5	1.88×10^{-1}	2.9
4.50	9.19×10^{-2}	0.3	5.60×10^{-2}	0.6	1.43×10^{-1}	3.5
4.75	7.19×10^{-2}	0.4	4.19×10^{-2}	0.7	1.12×10^{-1}	3.9
5.00	5.44×10^{-2}	0.4	3.09×10^{-2}	0.7	8.74×10^{-2}	4.5
5.25	4.12×10^{-2}	0.4	2.28×10^{-2}	0.9	6.27×10^{-2}	5.5
5.50	3.15×10^{-2}	0.4	1.69×10^{-2}	1.0	4.57×10^{-2}	6.8
5.75	2.34×10^{-2}	0.5	1.18×10^{-2}	1.2	3.27×10^{-2}	9.7
6.00	1.72×10^{-2}	0.5	8.71×10^{-3}	1.5	2.58×10^{-2}	12
6.25	1.25×10^{-2}	0.6	6.06×10^{-3}	1.9	2.44×10^{-2}	12
6.50	8.79×10^{-3}	0.6	4.11×10^{-3}	2.3	1.78×10^{-2}	13
6.75	5.85×10^{-3}	0.6	2.70×10^{-3}	2.9	9.36×10^{-3}	19
7.00	3.64×10^{-3}	0.8	1.60×10^{-3}	3.9	5.10×10^{-3}	28
7.25	2.23×10^{-3}	1.0	8.83×10^{-4}	5.3	3.78×10^{-3}	
7.50	1.24×10^{-3}	1.3	5.61×10^{-4}	6.6	2.45×10^{-3}	
7.75	5.80×10^{-4}	2.1	2.25×10^{-4}	12	1.44×10^{-3}	
8.00	2.28×10^{-4}	3.9	1.26×10^{-4}	26	6.93×10^{-4}	
8.25	1.19×10^{-4}	6.4	6.3×10^{-5}	66	4.80×10^{-4}	
8.50	5.34×10^{-5}	12	2.7×10^{-5}	78	3.00×10^{-4}	

THE REVISION OF CUMULATIVE SPECTRA OF BETA PARTICLES FROM 235 U, 239 Pu AND 238 U FISSION PRODUCTS BASED ON THE UPDATED MEASUREMENTS OF THE RATIO OF SPECTRA 235 U/ 239 Pu

© 2025 V. I. Kopeikin¹⁾, D. V. Popov^{1),2)}

¹⁾NRC "Kurchatov Institute", Moscow, Russia
²⁾NRNU MEPhI, Moscow, Russia

Based on new measurements of the ratio of cumulative spectra of β -particles $^{235}U/^{239}Pu$, performed at the Kurchatov Institute (KI), the cumulative spectra of β -particles fission products of ^{235}U , ^{239}Pu and ^{238}U isotopes have been updated. The presented β -particles spectra ^{235}U , ^{239}Pu and ^{238}U KI are compared with similar spectra measured at the Institute Laue—Langevin (ILL), and the spectrum of β -particles ^{238}U KI — with the measurements performed at the Technical University of Munich (TUM). It is shown that the ILL ratio of β -particles spectra $^{235}U/^{239}Pu$ is mistakenly overestimated by $\approx 5.4\%$.