УДК 539.122

Посвящается 270-летию Московского университета

НОВЫЕ ДАННЫЕ ПО СЕЧЕНИЯМ ФОТОНЕЙТРОННЫХ РЕАКЦИЙ НА ЯДРЕ ⁶⁸Zn

© 2025 г. В. В. Варламов^{1),*}, А. И. Давыдов¹⁾, И. А. Мостаков²⁾, В. Н. Орлин¹⁾

Поступила в редакцию 28.09.2024 г.; после доработки 28.09.2024 г.; принята к публикации 28.09.2024 г.

Новые данные о сечениях реакций (γ , 1n) и (γ , 2n) на ядре 68 Zn, для которого ранее в двух экспериментах на пучках тормозного γ -излучения были получены только сечение выхода нейтронов $\sigma^{\text{эксп}}(\gamma, xn) = \sigma(\gamma, 1n) + 2\sigma(\gamma, 2n)$ и сечение полной фотонейтронной реакции $\sigma^{\text{эксп}}(\gamma, sn) = \sigma(\gamma, 1n) + \sigma(\gamma, 2n)$, определены с использованием возможностей экспериментально-теоретического метода оценки сечений парциальных фотонейтронных реакций, основанного на объективных физических критериях. Вклады сечений парциальных реакций $\sigma^{\text{оцен}}(\gamma, in) = F_i^{\text{теор}} \times \sigma^{\text{эксп}}(\gamma, xn)$ для i=1 и 2 в сечение выхода были оценены с помощью отношений $F_i^{\text{теор}} = \sigma^{\text{теор}}(\gamma, in)/\sigma^{\text{теор}}(\gamma, xn)$, рассчитанных в Комбинированной модели фотоядерных реакций (КМФЯР).

Ключевые слова: сечения реакций $(\gamma, 1n)$ и $(\gamma, 2n)$, пучки тормозного γ -излучения, экспериментально-теоретический метод, комбинированная модель фотоядерных реакций (КМФЯР)

DOI: 10.31857/S0044002725010028, EDN: GSWFSV

1. ВВЕДЕНИЕ

Абсолютное большинство данных по сечениям парциальных фотонейтронных реакций (γ , 1n), (γ , 2n) и (γ , 3n), широко используемых в фундаментальных ядерно-физических исследованиях и разнообразных приложениях, получено в экспериментах на пучках квазимоноэнергетических фотонов, образующихся при аннигиляции на лету ускоренных позитронов [1—3], некоторое количество данных — в экспериментах на пучках тормозного γ -излучения [2, 3]. До настоящего времени достаточно интенсивные источники моноэнергетических γ -квантов отсутствуют. Для получения информации о сечениях парциальных реакций, а также сечениях полной фотонейтронной реакции

$$\sigma(\gamma, sn) = \sigma(\gamma, 1n) + \sigma(\gamma, 2n) + \sigma(\gamma, 3n)$$
 (1)

и выхода нейтронов

$$\sigma(\gamma, xn) = \sigma(\gamma, 1n) + 2\sigma(\gamma, 2n) + 3\sigma(\gamma, 3n)$$
 (2)

используются специальные методы создания условий, в которых фотоны, вызывающие иссле-

дуемую реакцию, могут быть интерпретированы как квазимоноэнергетические.

Такие методы значительно различаются. В экспериментах на пучках аннигиляционных фотонов сначала определяются сечения парциальных реакций $(\gamma, 1n), (\gamma, 2n)$ и $(\gamma, 3n),$ с помощью которых простым суммированием получаются полные сечения (1) и (2). В экспериментах на пучках тормозного у-излучения, напротив, сначала определяется сечение выхода (2), из которого с использованием поправок, рассчитываемых по статистической теории, и соответствующих разностных процедур получаются сечения парциальных реакций. Конкретные реализации таких методов в разных экспериментах также существенно различаются. Все эти различия являются причинами существенных систематических расхождений и по форме, и по абсолютной величине результатов экспериментов, выполненных на фотонных пучках не только разного, но и одного типа [4–8]. Так, было установлено, что сечения реакций $(\gamma, 1n)$ и $(\gamma, 2n)$, определенные для 19 ядер (⁵¹V, ⁷⁵As, ⁸⁹Y, ⁹⁰Zr, ¹¹⁵In, ¹¹⁶–118,120,124</sup>Sn, ¹²⁷I, ¹³³Cs, ¹⁵⁹Tb, ¹⁶⁵Ho, ¹⁸¹Ta, ¹⁹⁷Au, ²⁰⁸Pb, ²³²Th, ²³⁸U) на пучках квазимоноэнергетических аннигиляционных фотонов с помощью метода разделения фотонейтронов по множественности в двух лабораториях (Ливермор (США) и Сакле (Франция)), существенно (до 100% величины) систематически и разнонаправлено различаются. Сече-

¹⁾ Московский государственный университет имени М.В. Ломоносова, Научно-исследовательский институт ядерной физики имени Д.В. Скобельцына, Москва, Россия.
2) Московский государственный университет имени М.В. Ломоносова, Физический факультет, Москва, Россия.
* E-mail: VVVarlamov@gmail.com

ния реакции (γ , 1n) имеют большие абсолютные величины в одной лаборатории, тогда как реакции (γ , 2n) — в другой [4, 9]. При этом практически все сечения реакций, полученные на пучках аннигиляционных фотонов, имеют форму, существенно отличающуюся (сильно заглаженную) от формы сечений, полученных на пучках тормозного γ -излучения [7, 8, 10].

Наблюдающиеся расхождения в течение многих лет ставили на повестку дня вопросы о том, какие именно из существенного различающихся сечений разных реакций являются достоверными и являются ли данные, полученные такими методами, достоверными в целом. Были предложены метод анализа достоверности данных о сечениях парциальных фотонейтронных реакций, не зависящий от способа их получения, и метод оценки сечений таких реакций, удовлетворяющих объективным физическим критериям достоверности [11, 12]. Было установлено, что в случаях большого количества (~50) ядер, исследованных на пучках аннигиляционных фотонов, полученные экспериментально сечения не являются достоверными, поскольку содержат существенные систематические погрешности разного типа, обусловленные недостатками использованного в обеих упомянутых лабораториях непрямого метода определения множественности нейтронов на основании данных об их энергиях [11–32].

Предложенные методы анализа достоверности экспериментальных данных и оценки сечений реакций, удовлетворяющих физическим критериям достоверности [11, 12], являются универсальными и применимы к сечениям реакций с любой множественностью нейтронов, полученным на пучках налетающих фотонов любого типа. Они были использованы для анализа достоверности экспериментальных сечений парциальных фотонейтронных реакций, полученных для нескольких ядер (⁵¹V, ⁵²Cr, ⁵⁹Co, ^{58,60}Ni) на пучках тормозного у-излучения методами, альтернативными методу разделения нейтронов по множественности [33-36] и основанными на внесении в сечения выхода нейтронов (2) поправок, рассчитанных по статистической теории, и для оценки новых сечений реакций, удовлетворяющих физическим критериям достоверности. Было установлено, что к достоверности данных, полученных в экспериментах и этого типа, имеются определенные претензии, обусловленные некоторыми ограничениями применимости используемых поправок. Было показано, что недостатки сечений реакций, определенных в экспериментах обоего типа, обусловлены, прежде всего, тем, что разделение парциальных реакций в них проводится непрямыми и недостоверными

(вследствие присутствия существенных систематических погрешностей) методами.

Вместе с тем на основании детального сравнения данных, полученных для ядер ¹⁸¹Та [14], ¹⁹⁷Au [37] и ²⁰⁹Ві [19] активационным методом, в котором прямое разделение парциальных реакций проводится не по спектрам вылетающих нейтронов, а по характеристикам конечных ядер, было показано, что новые сечения парциальных реакций, оцененные с помощью экспериментально-теоретического метода, согласуются с результатами таких экспериментов.

В связи со сказанным в настоящей работе экспериментально-теоретический метод используется для оценки удовлетворяющих физическим критериям достоверности сечений реакций 68 Zn(γ , 1n) 67 Zn и 68 Zn(γ , 2n) 66 Zn, для которых экспериментальные данные в настоящее время отсутствуют.

2. ЭКСПЕРИМЕНТАЛЬНО-ТЕОРЕТИЧЕСКИЙ МЕТОД ОЦЕНКИ СЕЧЕНИЙ ПАРЦИАЛЬНЫХ ФОТОНЕЙТРОННЫХ РЕАКЦИЙ

Как отмечалось выше, экспериментальные сечения реакций (γ , 1n) и (γ , 2n) для большого количества ядер различаются существенно (до 100% величины), что обусловлено систематическими погрешностями непрямых методов их разделения. При этом сечения $\sigma(\gamma, xn)$ выхода нейтронов (2) различаются незначительно ($\sim 10\%$ величины) [4], поскольку в такое сечение дают вклады (с соответствующими коэффициентами множественности) все возможные энергетически парциальные реакции. В этой связи было предложено [11, 12] для оценки сечений парциальных реакций

$$\sigma^{\text{OLICH}}(\gamma, in) = F_i^{\text{Teop}} \times \sigma^{\text{ЭКСП}}(\gamma, xn),$$
 (3)

свободных от упомянутых недостатков, использовать лишь экспериментальное сечение $\sigma^{\text{эксп}}(\gamma, xn)$ выхода нейтронов (2), а вклады в него сечений реакций (γ , 1n) и (γ , 2n), а также в доступной энергетически области и реакции (γ , 3n), определять с помощью соответствующих отношений сечений определенной парциальной реакции $\sigma^{\text{теор}}(\gamma, in)$ к сечению выхода $\sigma^{\text{теор}}(\gamma, xn)$

$$\begin{split} F_i^{\text{Teop}} &= \sigma^{\text{Teop}}(\gamma, in) / \sigma^{\text{Teop}}(\gamma, xn) = \\ &= \sigma^{\text{Teop}}(\gamma, in) / \left[\sigma^{\text{Teop}}(\gamma, 1n) + 2\sigma^{\text{Teop}}(\gamma, 2n) + \right. \\ &\left. + 3\sigma^{\text{Teop}}(\gamma, 3n) \right], \end{split} \tag{4}$$

рассчитываемых в рамках Комбинированной модели фотоядерных реакций (КМФЯР)

[38, 39], — предравновесной модели, основанной на плотностях ядерных уровней, определенных в модели Ферми-газа, и учитывающей эффекты деформации ядра и изоспинового расщепления ГДР исследуемого ядра. Таким образом, суть экспериментально-теоретического метода заключается в том, что экспериментальное сечение $\sigma^{\text{эксп}}(\gamma, xn)$ выхода нейтронов (2), практически не зависящее от проблем экспериментального определения множественности нейтронов, разделяется на вклады сечений парциальных реакций с помощью отношений $F_i^{\text{теор}}$ (4), абсолютно не зависящих от этих проблем, при том, что $\sigma^{\text{оцен}}(\gamma, xn) = \sigma^{\text{эксп}}(\gamma, xn)$.

Отношения F_i (4), рассчитанные по данным экспериментальных сечений, позволяют сформулировать два жестких абсолютных физических критерия достоверности этих данных [11, 12]:

1) значения отношений $F_i^{\text{эксп}}$ не должны превышать абсолютных физических верхних пределов (1.00, 0.50, 0.33, ... соответственно для i = 1, 2, 3, ...);

2) отношения F_i ^{эксп} должны быть определенно положительными, поскольку все члены отношений (4) представляют собой сечения, имеющие размерность площади, и/или их суммы.

Дополнительно на основании детального сравнения данных, оцененных для ядер 181 Та [14], 197 Аи [37] и 209 Ві [19], с результатами соответствующих активационных экспериментов был установлен третий (не жесткий) критерий физической достоверности данных: близость экспериментальных отношений $F_i^{\text{эксп}}$ к отношениям $F_i^{\text{тeop}}$, полученным по результатам расчетов в рамках КМФЯР [38, 39].

3. ЭКСПЕРИМЕНТАЛЬНЫЕ ДАННЫЕ ПО ФОТОНЕЙТРОННЫМ РЕАКЦИЯМ НА ЯЛРЕ ⁶⁸Zn

К настоящему времени для ядра 68 Zn опубликовано только одно сечение $\sigma^{\text{эксп}}(\gamma, xn)$ выхода фотонейтронов (2) [40] и одно сечение $\sigma^{\text{эксп}}(\gamma, sn)$ полной фотонейтронной реакции (1) [41]. Оба сечения получены в аналогичных экспериментах, выполненных на пучках тормозного учалучения. Энергетические зависимости выхода реакции:

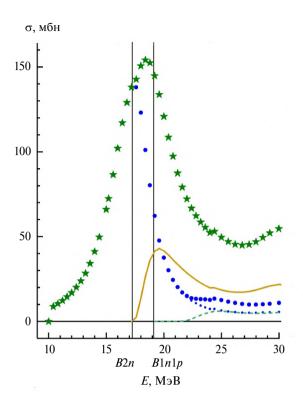
$$Y(E^{\mathbf{M}}) = \frac{N(E^{\mathbf{M}})}{\varepsilon D(E^{\mathbf{M}})} = \alpha \int_{E_{\text{IDD}}}^{E^{\mathbf{M}}} W(E^{\mathbf{M}}, E) \sigma(E) dE, \quad (5)$$

где $\sigma(E)$ — искомое сечение при энергии фотонов E, $E_{\text{пор}}$ — энергетический порог реакции, $W(E^{\text{M}}, E)$ — спектр фотонов тормозного γ -излучения с верхней границей E^{M} ,

Таблица 1. Пороги B (МэВ), энергетические положения максимума $E^{\text{макс}}$ (МэВ) и амплитуды $\sigma^{\text{макс}}$ (мбн) сечений фотоядерных реакций на ядре 68 Zn

Реакция	В	$E^{ ext{make}}$	σ ^{макс}
$(\gamma, 1n)$	10.20	17.6	137.7
$(\gamma, 2n)$	17.25	19.6	43.0
$(\gamma, 1n1p)$	19.11	25.0	6.1
$(\gamma, 3n)$	28.32	34.0	6.0

 $N(E^{\rm M})$ — число событий реакции, $D(E^{\rm M})$ — доза γ-излучения, ε – эффективность детектора, α – нормировочная константа, были измерены с помощью ¹⁰BF3-счетчиков, размещенных в парафиновом замедлителе (использовались данные о радиационном захвате нейтронов, замедлившихся до тепловых энергий). Измерения проведены в областях энергий налетающих фотонов от порога B1n = 10.2 МэВ реакции $(\gamma, 1n)$ до соответственно 27 (с шагом 50 кэВ) [40] и 25 МэВ (с шагом 143 кэВ) [41]. В обоих экспериментах сечение реакции $\sigma(E)$ определено традиционным методом [42], обусловленным тем, что спектр $W(E^{\rm M}, E)$ фотонов, вызывающих реакцию, имеет непрерывную форму, с помощью решения обратной задачи (5) его развертки из выхода $Y(E^{\rm M})$ методом Пенфолда—Лейсса. В эксперименте [40] использовался вариант с переменным шагом обработки – 0.2 МэВ в области энергий фотонов 10.0-11.5 МэВ, 0.5 МэВ в области 11.5-16.5 МэВ и 1.0 МэВ в области 16.5–27.0 MэB, а в эксперименте [41] — вариант с постоянным шагом, равным 1 МэВ.


Полученное в эксперименте сечение $\sigma(E)$ (5) представлено [40] в виде

$$\sigma^{9\text{KC}\Pi}(\gamma, xn) = \sigma^{9\text{KC}\Pi}(\gamma, 1n) +$$

$$+\sigma^{9\text{KC}\Pi}(\gamma, 1n1p) + 2\sigma^{9\text{KC}\Pi}(\gamma, 2n),$$
(6)

который несколько отличается от общего вида (2). Это обусловлено тем, что в области энергий фотонов до $E_{\gamma} \sim 27$ МэВ возможны именно три приведенные реакции — $(\gamma, 1n), (\gamma, 1n1p)$ и $(\gamma, 2n)$. Данные о порогах этих реакций вместе с энергетическими положениями и амплитудами сечений реакций, рассчитанными в КМ-ФЯР, приведены в табл. 1, а сами теоретически рассчитанные сечения $\sigma^{\text{теор}}(\gamma, 1n), \sigma^{\text{теоp}}(\gamma, 2n)$ и $\sigma^{\text{теор}}(\gamma, 1n1p)$ реакций на ядре 68 Zn представлены на рис. 1.

Важность учета вклада реакции (γ , 1n1p) в процессы фоторасщепления ядер отмечалась во всех выполненных ранее исследованиях достоверности данных о сечениях парциальных реакций [11—36]. Это обусловлено тем, что такая двухнук-

Рис. 1. Теоретически рассчитанные в рамках КМФЯР [38, 39] сечения различных реакций на ядре 68 Zn: сечение выхода нейтронов $\sigma^{\text{теор}}(\gamma, xn)$ — звезды, $\sigma(\gamma, 1n)$ + + $\sigma(\gamma, 1n1p)$ — кружки, $\sigma(\gamma, 2n)$ — сплошная кривая, $\sigma(\gamma, 1n1p)$ — штриховая кривая, $\sigma(\gamma, 1n)$ точки.

лонная реакция с множественностью нейтронов, равной 1, по энергиям нейтронов конкурирует не с однонуклонной реакцией $(\gamma, 1n)$ с такой же множественностью, а с также двухнуклонной реакцией (ү, 2n), множественность нейтронов из которой равна 2. В методе разделения фотонейтронов по множественности на основании данных об их энергиях, используемом на пучках аннигиляционных фотонов, это обстоятельство является источником дополнительных систематических погрешностей, искажающих идентификацию принадлежности нейтронов с относительно небольшими и близкими энергиями реакциям $(\gamma, 1n)$ и $(\gamma, 2n)$. В методе внесения поправок, рассчитанных по статистической теории, в сечение выхода нейтронов, непренебрежимый вклад реакции $(\gamma, 1n1p)$ искажает точность таких поправок.

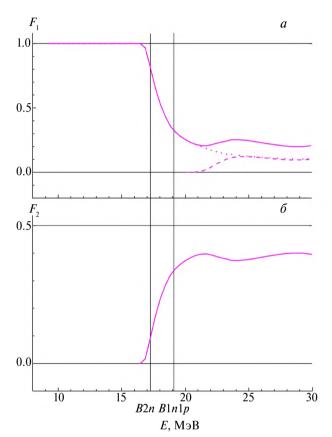
Данные, приведенные на рис. 1 и в табл. 1, свидетельствуют о том, что вклад реакции (γ , 1n1p) в процессы фоторасщепления ядра 68 Zn не является пренебрежимо малым по сравнению с вкла-

дами реакций (γ , 1n) и (γ , 2n), однако заметного влияния на эти процессы не оказывает.

По результатам эксперимента [41] сечение выхода нейтронов $\sigma^{\text{эксп}}(\gamma, xn)$ опубликовано не было, оно было использовано для получения сечения полной фотонейтронной реакции $\sigma^{\text{эксп}}(\gamma, sn)$, для чего использовался традиционный метод [42] внесения в сечение выхода поправок, рассчитанных по статистической теории [43].

4. ОЦЕНКА СЕЧЕНИЙ ПАРЦИАЛЬНЫХ РЕАКЦИЙ НА ЯДРЕ ⁶⁸Zn С ПОМОЩЬЮ ЭКСПЕРИМЕНТАЛЬНО-ТЕОРЕТИЧЕСКОГО МЕТОДА

Поскольку, как свидетельствуют данные табл. 1 и рис. 1, реакция (γ , 1n1p) играет некоторую роль в процессах фоторасщепления ядра ⁶⁸Zn, оценка (3) сечений парциальных реакций для этого ядра была выполнена с учетом теоретически рассчитанных в рамках КМФЯР [38, 39] сечений $\sigma^{\text{теор}}(\gamma, 1n)$, $\sigma^{\text{теоp}}(\gamma, 2n)$ и $\sigma^{\text{теоp}}(\gamma, 1n1p)$, а также полученных при их использовании сечений $\sigma^{\text{теоp}}(\gamma, 1n) + \sigma^{\text{теоp}}(\gamma, 1n1p)$ и $\sigma^{\text{теоp}}(\gamma, xn)$.


С помощью рассчитанных теоретически сечений были получены соответствующие отношения $F_i^{\text{теор}}$ (4), которые представлены на рис. 2. Эти отношения использовались для оценки (3) сечений парциальных реакций на основе экспериментального сечения $\sigma^{3\kappa cn}(\gamma, xn)$ [40] выхода нейтронов для ядра ⁶⁸Zn, которое приведено на рис. 3 в сравнении с теоретическим сечением $\sigma^{\text{теор}}(\gamma, xn)$ [38, 39], рассчитанным в рамках КМФЯР. С целью максимального сближения экспериментального [40] и теоретического [38, 39] сечений выхода нейтронов, последнее (штриховая кривая на рис. 3) было слегка скорректировано (сплошная кривая на рис. 3) на основании данных об интегральных сечениях и энергетических центрах тяжести обоих сечений, приведенных в табл. 2. Корректировка заключалась в смещении теоретического сечения $\sigma^{\text{теор}}(\gamma, xn)$ в сторону меньших энергий на вели-

$$\Delta E^{\text{II.T}} = E^{\text{II.T-Teop}} - E^{\text{II.T-9KCII}} = 19.2 - 18.5 = 0.7 \text{ M} \ni \text{B}$$

и умножении его на коэффициент $\sigma^{\text{инт-эксп}}/\sigma^{\text{инт-теор}} = 1610/1203 = 1.33$ (использованы соответствующие данные, рассчитанные до энергии налетающих фотонов 26.85 МэВ). Уточненные по параметрам скорректированного сечения $\sigma^{\text{теор-корр}}(\gamma, xn)$ отношения $F_i^{\text{теор-корр}}(4)$ были использованы в процедуре (3) оценки сечений парциальных реакций.

 $E^{\text{инт}} = B2n = 17.25 \text{ МэВ}$ $E^{\text{инт}} = 26.85 \text{ МэВ}$ Область энергий $\sigma^{\text{инт}}$, МэВ мбн $E^{\text{ц.т}}$, МэВ $\sigma^{\text{инт}}$, МэВ мбн $E^{\text{ц.т}}$, МэВ 644.12 ± 2.29 14.91 ± 0.22 1610.9 ± 5.49 18.45 ± 0.31 Эксперимент [40] 359.47 ± 7.80 Теория [38, 39] 15.32 ± 1.43 1203.18 ± 12.18 19.20 ± 0.76 Теория – корр. 613.16 ± 12.67 15.20 ± 1.43 1643.86 ± 16.37 18.73 ± 0.72

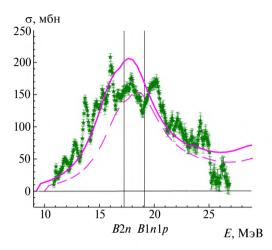

Таблица 2. Интегральные сечения $\sigma^{\text{инт}}$ и энергетические центры тяжести $E^{\text{ц.т.}}$, рассчитанные по экспериментальному [40] и теоретическому [38, 39] (до и после корректировки) сечениям реакции ⁶⁸Zn(γ , xn)

Рис. 2. Теоретические отношения $F_1^{\text{теор}} = \sigma^{\text{теор}}(\gamma, 1n) + \sigma^{\text{теор}}(\gamma, 1n1p)/\sigma^{\text{теор}}(\gamma, xn)$ (a) и $F_2^{\text{теор}} = \sigma^{\text{теор}}(\gamma, 2n)/\sigma^{\text{теор}}(\gamma, xn)$ (б) для ядра ⁶⁸ Zn, определенные по данным теоретических сечений реакций, рассчитанных в рамках КМФЯР [38, 39]. При энергиях, превышающих порог B1n1p реакции $(\gamma, 1n1p)$, отношение $F_1^{\text{теор}}$ приведено без учета (точки) и с учетом (сплошная кривая) вклада сечения $\sigma^{\text{теор}}(\gamma, 1n1p)$ — штриховая кривая.

5. ОЦЕНЕННЫЕ СЕЧЕНИЯ ПАРЦИАЛЬНЫХ $PEAKUMHA AJPE^{68}Zn$

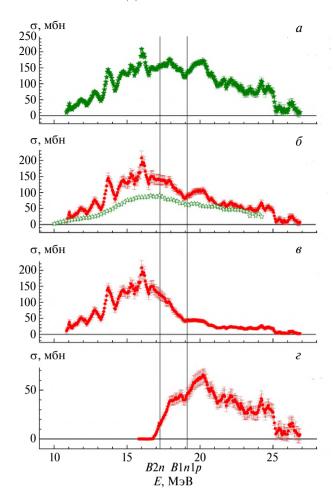

Новые оцененные сечения парциальных реакций 68 Zn(γ , 1n) 67 Zn, 68 Zn(γ , 2n) 66 Zn и 68 Zn(γ , 1n1p) 66 Cu, экспериментальные данные для которых до настоящего времени получены не были, представлены на рис. 4. Соответствующие оцененным данным интегральные сечения

Рис. 3. Сравнение экспериментального сечения выхода нейтронов 68 Zn(γ , xn) ([40] — звезды) с сечением, теоретически рассчитанным в рамках КМФЯР [38, 39] (до (штриховая кривая) и после (сплошная кривая) корректировки).

реакций (γ , sn), (γ , 1n) и (γ , 2n) приведены в табл. З вместе с аналогичными данными использованного для оценки экспериментального сечения выхода $\sigma^{\text{эксп}}(\gamma, xn)$ [40], а также единственного опубликованного сечения полной фотонейтронной реакции $\sigma^{\text{эксп}}(\gamma, sn)$, полученного в другом эксперименте на пучке тормозного γ -излучения [41].

Сравнение оцененного сечения полной фотонейтронной реакции $\sigma^{\text{оцен}}(\gamma, sn) = \sigma^{\text{оцен}}(\gamma, 1n) +$ $+ \sigma^{\text{оцен}}(\gamma, 2n)$ с экспериментальным сечением $\sigma^{3KC\Pi}(\gamma, sn)$ [41] позволяет оценить достоверность данных по этому сечению, полученных с помощью внесения в сечение выхода нейтронов поправок, рассчитанных по статистической теории. Это сравнение свидетельствуют о следующем. В области энергий налетающих фотонов до порога B2n = 17.25 МэВ возможна только реакция $(\gamma, 1n)$, проблемы экспериментального определения множественности нейтронов отсутствуют. Отношение оцененного и экспериментального [41] интегральных сечений полной фотонейтронной реакции (у, sn) имеет величину $\sigma^{\text{инт-оцен}}/\sigma^{\text{инт-эксп}} = 1.90$ (640.58/337.29). Такое

Рис. 4. Оцененные (кружки) и экспериментальные ([40] — звезды) сечения реакций на ядре 68 Zn: $a - \sigma^{\text{эксп}}(\gamma, xn)$; $\delta - \sigma^{\text{оцен}}(\gamma, sn)$, незаполненные звезды — экспериментальное сечение [41]; $\epsilon - \sigma^{\text{оцен}}(\gamma, 1n)$; $\epsilon - \sigma^{\text{оцен}}(\gamma, 2n)$.

различие, оставаясь постоянным в области энергий до 27 МэВ, могло бы быть следствием возможного простого расхождения в нормировке данных по сечению выхода нейтронов из экспериментов [40] и [41]. Однако приведенные данные свидетельствуют о том, что величина такого отношения существенно уменьшается с увеличением энергии фотонов. Так, для областей энергий до порога $B1n1p = 19.25 \text{ M} \Rightarrow \text{B}$ оно равно 1.76 (855.06/486.62), а до $E^{\text{ИНТ}} = 24.40 \text{ M} \ni \text{B} - 1.67$ (1223.45/732.02). Для области энергий, превышающих $B2n = 17.25 \text{ M} \rightarrow \text{B}$, обсуждаемое отношение оказывается еще меньше очнт-оцен/очнт-эксп = 582.87/394.73 = 1.47. Это означает, что кроме возможных расхождений, связанных с нормировкой данных, которые не должны зависеть от энергии фотонов, в экспериментальном сечении полной фотонейтронной реакции [41] присутствуют погрешности, обусловленные иными причинами, а именно - определенными недостатками метода получения сечения $\sigma^{\text{эксп}}(\gamma, sn)$ [41] с использованием поправок, рассчитанных ПО статистической Обнаруженная энергетическая зависимость отношения очнт-оцен/очнт-эксп свидетельствует о том, что сечение реакции $(\gamma, 2n)$, определенное с помощью таких поправок и вычтенное из сечения выхода $\sigma^{\text{эксп}}(\gamma, xn)$ для получения $\sigma^{\text{эксп}}(\gamma, sn)$ [41], недостоверно (необоснованно) завышено по сравнению с сечением реакции (у, 2n), оцененным с помощью экспериментальнотеоретического метода и удовлетворяющим физическим критериям достоверности. В такой ситуации экспериментальное сечение реакции $(\gamma, 1n)$ [41], соответственно, оказывается недостоверно заниженным по сравнению с оцененным сечением.

Обнаруженная зависимость конкуренции реакций $(\gamma, 1n)$ и $(\gamma, 2n)$, определенных с помощью упомянутых выше поправок, от энергии налетающих фотонов в целом согласуется с результатами, полученными ранее при проведении оценки с помощью экспериментальнотеоретического метода сечений парциальных фотонейтронных реакций на ядрах ⁵¹V, ⁵²Cr, ⁵⁹Co, ^{58,60}Ni и ⁹⁰Zr [33–36, 44], с использованием сечений $\sigma(\gamma, xn)$ выхода нейтронов (2), определенных в экспериментах на пучках тормозного у-излучения. Это обусловлено тем, что обсуждаемые поправки достаточно хорошо работают лишь в области относительно малых (~10-15 МэВ) энергий налетающих фотонов. В области больших энергий, в которой конкурируют реакции $(\gamma, 1n)$ и $(\gamma, 2n)$, а в случаях относительно легких ядер и реакция $(\gamma, 1n1p)$, эти поправки становятся менее точными вследствие того, что при таких энергиях начинают играть роль процессы предравновесного распада составной системы.

6. ЗАКЛЮЧЕНИЕ

Новые сечения парциальных реакций 68 Zn(γ , 1n) 67 Zn и 68 Zn(γ , 2n) 66 Zn, которые экспериментально определены не были, получены с помощью экспериментально-теоретического метода оценки сечений парциальных фотонейтронных реакций, использованного ранее для получения данных о таких реакциях, удовлетворяющих объективным физическим критериям достоверности.

Оценено также сечение 68 Zn(γ , sn) полной фотонейтронной реакции (1), для которой ранее был опубликован лишь единственный результат эксперимента, выполненного на пучке тормозного γ -излучения.

Таблица 3. Интегральные сечения $\sigma^{\text{инт}}$ (в единицах МэВ мбн), рассчитанные для оцененных сечений полной и парциальных фотонейтронных реакций на ядре 68 Zn в сравнении с экспериментальными данными для сечения выхода нейтронов (γ , xn) [40] и сечения полной фотонейтронной реакции (γ , sn) [41]

Реакция	Оцененные данные	Эксперимент [40]	Эксперимент [41]
	$E^{\text{uht}} = B2n$	= 17.25 M ₃ B	
(γ, xn)		644.12 ± 2.29	
(γ, sn)	640.58 ± 5.52		337.29 ± 2.41
$(\gamma, 1n)$	637.03 ± 5.52		
$(\gamma, 2n)$	3.54 ± 0.12		
	$E^{\text{инт}} = B1n1$	p = 19.11 МэВ	
(γ, xn)		925.8 ± 2.77	
(γ, sn)	855.06 ± 6.01		486.62 ± 3.26
$(\gamma, 1n)$	785.67 ± 5.93		
$(\gamma, 2n)$	69.40 ± 0.97		
	$E^{\text{uht}} = 2$	24.40 МэВ	
(γ, xn)		1517.47 ± 4.45	
(γ, sn)	1223.45 ± 6.68		732.02 ± 4.88
$(\gamma, 1n1p)$	20.79 ± 0.44		
$(\gamma, 1n)^*$	929.40 ± 6.13		
$(\gamma, 2n)$	294.05 ± 2.65		
	$E^{\text{инт}} = 2$	26.85 МэВ	
(γ, xn)		1610.89 ± 5.49	
(γ, sn)	1281.46 ± 7.00		
$(\gamma, 1n1p)$	31.95 ± 0.70		
$(\gamma, 1n)^*$	952.01 ± 6.23		
$(\gamma, 2n)$	329.45 ± 3.20		

^{*}Сечение реакции $(\gamma, 1n)$ с учетом небольшого вклада реакции $(\gamma, 1n1p)$.

Для оценки новых сечений реакций на ядре 68 Zn использованы единственное известное сечение выхода нейтронов $\sigma^{\text{эксп}}(\gamma, xn)$, определенное в эксперименте на пучке тормозного γ -излучения [40], и результаты теоретических расчетов в рамках КМФЯР [38, 39].

Сравнение нового оцененного сечения полной фотонейтронной реакции $\sigma^{\text{оцен}}(\gamma,sn)$ на ядре 68 Zn с единственным экспериментальным сечением полной фотонейтронной реакции $\sigma^{\text{эксп}}(\gamma,sn)$ [41] позволяет оценить достоверность данных, полученных с использованием поправок, рассчитанных по статистической теории. Это сравнение свидетельствует о том, что в экспериментальном сечении полной фотонейтронной реакции [41] присутствуют систематические погрешности, обусловленные недостатками метода его получения. Использование обсуждаемых поправок привело к недостоверному завышению вклада сечения реакции 68 Zn $(\gamma, 2n)^{66}$ Zn и, соответственно, к занижению вклада сечения реакции 68 Zn $(\gamma, 1n)^{67}$ Zn относительно оцененных сече-

ний, удовлетворяющих физическим критериям достоверности данных. Это обусловлено тем, что, достаточно хорошо работая в области относительно небольших энергий фотонов, в которой возможна лишь реакция (γ , 1n), такие поправки в области больших энергий, в которых эта реакция конкурирует с реакциями (γ , 2n) и (γ , 1n1p), теряют свою точность вследствие того, что начинают играть определенную дополнительную роль различные нестатистические процессы.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в Отделе электромагнитных процессов и взаимодействий атомных ядер (Центр данных фотоядерных экспериментов) Научно-исследовательского института ядерной физики имени Д. В. Скобельцына Московского государственного университета имени М. В. Ломоносова. Исследование выполнено в рамках государственного задания МГУ имени М. В. Ломоносова.

СПИСОК ЛИТЕРАТУРЫ

- S. S. Dietrich and B. L. Berman, At. Data Nucl. Data Tables 38, 199 (1988).
- IAEA Nuclear Data Section Experimental Nuclear Reaction Data (EXFOR), IAEA; URL: http://www-nds.iaea.org/exfor
- 3. A. V. Varlamov, V. V. Varlamov, D. S. Rudenko, and M. E. Stepanov, INDC(NDS)-394, IAEA NDS (Vienna, Austria, 1999).
- 4. V. V. Varlamov and B. S. Ishkhanov, INDC(CCP)-433, IAEA NDS (Vienna, Austria, 2002).
- B. S. Ishkhanov, V. N. Orlin, N. N. Peskov, and V. V. Varlamov, Phys. Part. Nucl. 48, 76 (2017).
- 6. В. В. Варламов, Б. С. Ишханов, ЯФ **80**, 554 (2017) [Phys. At. Nucl. **80**, 957 (2017)].
- 7. В. В. Варламов, А. И. Давыдов, В. Н. Орлин, Вестн. Моск. ун-та. Сер. 3. Физика. Астрономия **78**, 2330206 (2023) [Moscow Univ. Phys. Bull. **78**, 303 (2023)].
- 8. В. Варламов, А. И. Давыдов, Вестн. Моск. унта. Сер. 3. Физика. Астрономия **79**, 2420201 (2024) [Moscow Univ. Phys. Bull. **79**, 178 (2024)].
- В. В. Варламов, Н. Н. Песков, Д. С. Руденко, М. Е. Степанов, ВАНТ. Сер.: Ядерные константы 1–2, 48 (2003).
- В. В. Варламов, Б. С. Ишханов, М. Е. Степанов, Д. С. Руденко, Изв. РАН. Сер. физ. 67, 1570 (2003) [Bull. Russ. Acad. Sci.: Phys. 67, 1733 (2003)].
- 11. В. В. Варламов, Б. С. Ишханов, В. Н. Орлин, В. А. Четверткова, Изв. РАН. Сер. физ. **74**, 875 (2010) [Bull. Russ. Acad. Sci.: Phys. **74**, 833 (2010)].
- 12. В. В. Варламов, Б. С. Ишханов, В. Н. Орлин, С. Ю. Трощиев, Изв. РАН. Сер. физ. **74**, 884 (2010) [Bull. Russ. Acad. Sci.: Phys. **74**, 842 (2010)].
- 13. В. В. Варламов, Б. С. Ишханов, В. Н. Орлин, ЯФ 75, 1414 (2012) [Phys. At. Nucl. 75, 1339 (2012)].
- 14. В. В. Варламов, Б. С. Ишханов, В. Н. Орлин, Н. Н. Песков, М. Е. Степанов, ЯФ **76**, 1484 (2013) [Phys. At. Nucl. **76**, 1403 (2013)].
- 15. В. В. Варламов, В. Н. Орлин, Н. Н. Песков, М. Е. Степанов, Изв. РАН. Сер. физ. 77, 433 (2013) [Bull. Russ. Acad. Sci.: Phys. 77, 388 (2013)].
- V. V. Varlamov, B. S. Ishkhanov, V. N. Orlin, and K. A. Stopani, Eur. Phys. J. A 50, 114 (2014).
- 17. В. В. Варламов, М. А. Макаров, Н. Н. Песков, М. Е. Степанов, ЯФ **78**, 678 (2015) [Phys. At. Nucl. **78**, 634 (2015)].
- В. В. Варламов, М. А. Макаров, Н. Н. Песков, М. Е. Степанов, ЯФ 78, 797 (2015) [Phys. At. Nucl. 78, 746 (2015)].
- S. S. Belyshev, D. M. Filipescu, I. Gheorghe,
 B. S. Ishkhanov, V. V. Khankin, A. S. Kurilik,
 A. A. Kuznetsov, V. N. Orlin, N. N. Peskov,
 K. A. Stopani, O. Tesileanu, and V. V. Varlamov, Eur.
 Phys. J. A 51, 67 (2015).
- 20. В. В. Варламов, А. И. Давыдов, М. А. Макаров, В. Н. Орлин, Н. Н. Песков, Изв. РАН. Сер. физ.

- **80**, 351 (2016) [Bull. Russ. Acad. Sci.: Phys. **80**, 317 (2016)].
- 21. В. В. Варламов, Б. С. Ишханов, В. Н. Орлин, Н. Н. Песков, М. Е. Степанов, ЯФ **79**, 315 (2016) [Phys. At. Nucl. **79**, 501 (2016)].
- 22. V. V. Varlamov, B. S. Ishkhanov, and V. N. Orlin, Phys. Rev. C **95**, 054607 (2017).
- 23. V. V. Varlamov, B. S. Ishkhanov, and V. N. Orlin, Phys. Rev. C **96**, 044606 (2017).
- 24. V. V. Varlamov, A. I. Davydov, and B. S. Ishkhanov, Eur. Phys. J. A **53**, 180 (2017).
- 25. В. В. Варламов, Б. С. Ишханов, В. Н. Орлин, ЯФ **80**, 632 (2017) [Phys. At. Nucl. **80**, 1106 (2017)].
- 26. В. В. Варламов, В. Н. Орлин, Н. Н. Песков, Изв. РАН. Сер. физ. **81**, 744 (2017) [Bull. Russ. Acad. Sci.: Phys. **81**, 670 (2017)].
- V. V. Varlamov, A. I. Davydov, B. S. Ishkhanov, and V. N. Orlin, Eur. Phys. J. A 54, 74 (2018).
- 28. V. Varlamov, A. Davydov, V. Kaidarova, and V. Orlin, Phys. Rev. C **99**, 024608 (2019).
- V. V. Varlamov, A. I. Davydov, and V. N. Orlin, Amer. J. Phys. Appl. 8, 64 (2020).
- 30. В. В. Варламов, А. И. Давыдов, В. Н. Орлин, ЯФ **84**, 278 (2021) [Phys. At. Nucl. **84**, 389 (2021)].
- 31. V. V. Varlamov, A. I. Davydov, and V. N. Orlin, Eur. Phys. J. A **58**, 123 (2022).
- 32. В. В. Варламов, А. И. Давыдов, В. Н. Орлин, ЯФ **85**, 237 (2022) [Phys. At. Nucl. **85**, 316 (2022)].
- 33. В. В. Варламов, А. И. Давыдов, В. Н. Орлин, ЯФ **85**, 316 (2022) [Phys. At. Nucl. **85**, 411 (2022)].
- 34. В. В. Варламов, А. И. Давыдов, В. Н. Орлин, Изв. РАН. Сер. физ. **87**, 1166 (2023) [Bull. Russ. Acad. Sci.: Phys. **87**, 1179 (2023)].
- В. В. Варламов, А. И. Давыдов, И. А. Мостаков, В. Н. Орлин, ЯФ 86, 532 (2023) [Phys. At. Nucl. 86, 600 (2023].
- 36. В. В. Варламов, А. И. Давыдов, В. Н. Орлин, Изв. РАН. Сер. физ. **87**, 1176 (2023) [Bull. Russ. Acad. Sci.: Phys. **87**, 1188 (2023)].
- 37. В. В. Варламов, А. И. Давыдов, ЯФ **85**, 2 (2022) [Phys. At. Nucl. **85**, 1 (2022)].
- 38. Б. С. Ишханов, В. Н. Орлин, ЭЧАЯ **38**, 460 (2007) [Phys. Part. Nucl. **38**, 232 (2007)].
- 39. Б. С. Ишханов, В. Н. Орлин, ЯФ **71**, 517 (2008) [Phys. At. Nucl. **71**, 493 (2008)].
- 40. Б. С. Ишханов, И. М. Капитонов, Е. В. Лазутин, И. М. Пискарев, О. П. Шевченко, ЯФ **20**, 433 (1974) [Sov. J. Nucl. Phys. **20**, 233 (1975)].
- 41. А. М. Горячев, Г. Н. Залесный, Вопр. теор. ядерн. физ. **8**, 121 (1982).
- 42. Б. С. Ишханов, И. М. Капитонов, *Взаимодействие электромагнитного излучения с атомными ядрами* (Изд-во Моск. ун-та, Москва, 1979).
- 43. J. M. Blatt and V. F. Weisskopf, *Theoretical Nuclear Physics* (John Wiley & Sons, New York, 1952).
- 44. V. V. Varlamov, A. I. Davydov, I. A. Mostakov, and V. N. Orlin, Phys. At. Nucl. **87**, 575 (2024).

NEW DATA ON PHOTONEUTRON REACTION CROSS SECTIONS FOR ⁶⁸Zn

© 2025 V. V. Varlamov¹⁾, A. I. Davydov¹⁾, I. A. Mostakov²⁾, V. N. Orlin¹⁾

¹⁾ Skobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State University, Russia
²⁾ Faculty of Physics, Lomonosov Moscow State University, Russia

New data on cross sections of the $(\gamma, 1n)$ and $(\gamma, 2n)$ reactions on the 68 Zn nucleus, for which the neutron yield cross sections of $\sigma^{\exp}(\gamma, xn) = \sigma(\gamma, 1n) + 2\sigma(\gamma, 2n)$ and the total photoneutron reaction $\sigma^{\exp}(\gamma, sn) = \sigma(\gamma, 1n) + \sigma(\gamma, 2n)$ have been obtained in two experiments on the beams of bremsstrahlung, were determined using the possibilities of the experimental-theoretical method for the evaluation of cross sections of partial photoneutron reactions based on objective physical criteria. The contributions of partial reaction cross sections $\sigma^{\text{eval}}(\gamma, in) = F_i^{\text{theor}} \times \sigma^{\exp}(\gamma, xn)$ for i = 1 and 2 to the neutron yield cross section were evaluated using the ratios $F_i^{\text{theor}} \times \sigma = \sigma^{\text{theor}}(\gamma, in) / \sigma^{\text{theor}}(\gamma, xn)$ calculated within the combined photonuclear reaction model (CPNRM).