УДК 539.172

КОРРЕЛЯЦИОННЫЕ ХАРАКТЕРИСТИКИ ЯДРА 20 Ne($^{2+}$, 1.634 МэВ), ОБРАЗОВАННОГО В РЕАКЦИИ 19 F(α , t) 20 Ne ПРИ $E_{\alpha}=30.3$ МэВ

© 2025 г. Л. И. Галанина^{1),*}, Н. С. Зеленская¹⁾, В. М. Лебедев¹⁾, Н. В. Орлова¹⁾, А. В. Спасский¹⁾

Поступила в редакцию 31.10.2024 г.; после доработки 31.10.2024 г.; принята к публикации 31.10.2024 г.

Исследованные на циклотроне НИИЯФ МГУ дифференциальные сечения реакции 19 F(α , t) 20 Ne(g. s., 2^+ , 4^+), $t\gamma$ -угловые корреляции в реакции 19 F(α , t) 20 Ne(2^+) при энергии $E_{\alpha}=30.3$ МэВ и восстановленные на их основе тензоры ориентации $t_{k\kappa}(\theta_t)$ мультипольных моментов и выстроенности $F_k(\theta_t)$ ядра 20 Ne(2^+) сопоставлены с расчетными в предположении прямого механизма срыва протона с учетом связи каналов по методу Coupled-channels Born арргохіпатіоп. Установлен набор необходимых для такого механизма реакции параметров расчета, и определены их конкретные значения. Рассчитанные дифференциальные сечения реакции 19 F(α , t) 20 Ne для всех состояний вращательной полосы согласуются с экспериментальными при $\theta_t < 120^\circ$, где прямой механизм вносит основной вклад. В этой же области θ_t тензоры ориентации $t_{k\kappa}(\theta_t)$ и выстроенности $F_2(\theta_t)$ и $F_4(\theta_t)$ ядра 20 Ne(2^+) удовлетворительно согласуются с экспериментальными. Установлено, что их величина при $\theta_t < 120^\circ$ невелика, т.е. изотропность распределения спинов в 20 Ne(2^+) не нарушается. При больших углах θ_t и экспериментальная, и рассчитанная величины $F_4 \approx 0.5$, что свидетельствует о частичном нарушении этой изотропности.

Ключевые слова: ядерные реакции, срыв протона, угловые корреляции

DOI: 10.31857/S0044002725010128, EDN: GRWRMG

1. ВВЕДЕНИЕ

На циклотроне НИИЯФ МГУ нами получены экспериментальные сечения реакции 19 F(α , t) 20 Ne(g. s., 2^+ , 4^+) и $t\gamma$ -угловые корреляции в реакции 19 F(α , t) 20 Ne(2^+ , 1.634 МэВ) при энергии $E_{\alpha}=30.3$ MeV в трех плоскостях регистрации γ -квантов, включая плоскость реакции [1], с неполяризованными падающими на ядро α -частицами и без измерения поляризации конечных тритонов. Такая методика, в соответствии с [2], позволяет найти значения полного набора спин-тензоров $\rho_{k\kappa}(\theta_t)$ четного ранга k матрицы плотности возбужденного ядра 20 Ne($^{2+}$, 1.634 МэВ) в системе координат с осью квантования Z в плоскости реакции вдоль пучка α -частии.

В [1] выполнен теоретический анализ экспериментальных дифференциальных сечений реакции 19 F(α , t) 20 Ne(g. s., 2^+ , 4^+) для механизма срыва нуклона с учетом коллективного возбуждения ядер 19 F и 20 Ne по методу связанных каналов с помощью программного кода CHUCK [3], однако абсолютные величины измеренных сечений удалось согласовать с расчетными только при введении нормировочных множителей.

В настоящей работе мы возвращаемся к анализу экспериментальных данных [1], рассматривая в едином современном подходе прямого механизма срыва протона с учетом связи каналов по методу Coupled-channels Born approximation — ССВА (код FRESCO) [4], не только сечения реакции 19 F(α , t) 20 Ne(g. s., 2^+ , 4^+), но и угловые зависимости корреляционных $t\gamma$ -характеристик возбужденного ядра 20 Ne(2⁺, 1.634 MэВ) с k == 2, 4. К таким характеристикам относятся тензоры ориентации $t_{k\kappa}(\theta_t)$ мультипольных моментов [2] ядра ${}^{20}\text{Ne}(2^+)$ и выстроенности $F_k(\theta_t)$ [5], связанные с тензорами его поляризации. В следуюшем разделе определены основные расчетные параметры метода ССВА, оказывающие влияние на величину характеристик реакции 19 F(α , t) 20 Ne, и независимо оценены их значения. В разд. 3, 4 рассчитанные дифференциальные сечения реакции и корреляционные характеристики ядра 20 Ne($^{2+}$) сопоставлены с экспериментальными. В Заключении подведены итоги обсуждения полученных результатов.

2. ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ, ИСПОЛЬЗУЕМЫХ В РАСЧЕТАХ

Для численной реализации прямого механизма срыва протона в ССВА необходимыми параметрами расчета являются: число учитываемых каналов и коэффициенты их связи, спектроскопи-

¹⁾ Московский государственный университет имени М.В. Ломоносова, Научно-исследовательский институт ядерной физики имени Д.В. Скобельцына, Москва, Россия. * E-mail: galan_lidiya@mai.ru

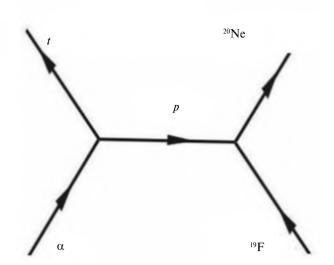


Рис. 1. Диаграмма, иллюстрирующая механизм срыва протона в реакции 19 $F(\alpha, t)^{20}$ Ne.

ческие амплитуды (CA), определяющие вероятность развала в каждой вершине полюсной диаграммы рис. 1, и оптические потенциалы (ОП) во входном, выходном каналах и канале кор—корвзаимодействия.

2.1. Выбор каналов и коэффициентов их связи

Ядро 20 Ne(4 $^+$, 4.247 MэВ) не может быть образовано за счет механизма срыва протона (см. рис. 1) с орбитальным моментом $\Lambda = 0, 2$ на основное состояние ядра-мишени 19 F $(1/2^+)$. Это состояние может заселяться за счет механизма образования составного ядра и за счет связи каналов в конечном ядре ²⁰Ne. Однако экспериментальное угловое распределение дифференциального сечения реакции 19 F(α , t) 20 Ne($^{4+}$, 4.25 МэВ) по форме и величине не соответствует этим механизмам: форма сечения не симметрична относительно $\theta_t = 90^\circ$, а его величина значительна. Альтернативным механизмом заселения состояния 4^+ в 20 Ne является возбуждение состояний 19 F (5/2⁺, 0.197 MэB) и 19 F (3/2⁺, 1.554 МэВ) в ядре ¹⁹ F и добавление валентного протона к этим состояниям. Именно такая связь каналов в начальном и конечном ядре для механизма срыва протона реализована в настоящей работе (рис. 2). Аналогичная связь использована в [6] при расчете дифференциальных сечений реакции ¹⁹F(³He, $d)^{20}$ Ne.

Определим коэффициенты связи (KC) между различными состояниями в ядрах 19 F и 20 Ne.

Состояния 19 F (5/2+, 0.197 МэВ) и (3/2+, 1.554 МэВ) в [6] рассматривались как протонная дырка в (2+, 1.634 МэВ) состоянии 20 Ne. При таком подходе для описания связи между 0^+ - и 2^+ -

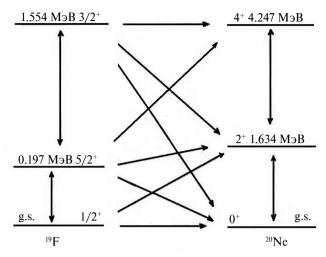


Рис. 2. Схема связи каналов в реакции 19 F(α , t) 20 Ne. Прямые со стрелками — передача протонов, с двойными стрелками — связь каналов в ядрах 19 F и 20 Ne.

состояниями 20 Ne и (1/2⁺, g. s.), (5/2⁺, 0.197 МэВ) и (3/2⁺, 1.554 МэВ) состояниями 19 F в [6] использовались одни и те же КС, основанные на деформации основного состояния 20 Ne с $\beta_2=0.45$, $\beta_4=0.15$ в ротационной модели.

Мы используем другой выбор КС между возбужденными уровнями, разрешенный в коде FRESCO [4]: КС задаются в качестве входных параметров на основе известных интенсивностей γпереходов между уровнями без предположения о справедливости ротационной модели для ¹⁹ F.

Согласно [7], в ядре ¹⁹F имеются два основных электромагнитных перехода между уровнями: ¹⁹F(g. s.) \leftrightarrow ¹⁹F(5/2+, 0.197 МэВ) и ¹⁹F(3/2+, 1.554 МэВ) \leftrightarrow ¹⁹F(5/2+, 0.197 МэВ). Используя приведенные в [8] расчетные интенсивности B(E2) переходов в ядре ¹⁹F, мы оценили КС каналов за счет кулоновского взаимодействия:

$$KC_{\text{KyJIOH}}(1/2^+ \to 5/2^+) = 11.3e^2 \Phi_{\text{M}}^4,$$

 $KC_{\text{KYJIOH}}(3/2^+ \to 5/2^+) = 10.5e^2 \Phi_{\text{M}}^4,$

где e — заряд электрона.

Для ядерного взаимодействия между каналами $KC_{\text{ядер}}$ оценивались с помощью соотношения, связывающего интенсивности электромагнитных переходов с параметром деформации в ротационной модели:

$$M_2 = \frac{3Z\beta_2 R^2}{4\pi},$$

где β_2 — параметр деформации ¹⁹ F.

Для выходного канала $t + {}^{20}$ Ne кулоновские $KC_{\text{кулон}}$ оценивались из известной [7] интенсивности перехода $B(E_2, 0^+ \leftrightarrow 2^+) = 3300 \ e^2 \ \Phi \text{M}^4$, ядерные — по деформации $\beta_2 = 0.45$, $\beta_4 = 0.15$ ротационного ядра 20 N. Полный набор KC, с которыми проведены расчеты, приведен в табл. 1.

2.2. Спектроскопические амплитуды для механизма срыва протона в реакции $^{19}F(\alpha,t)^{20}Ne$

Рассчитаем СА протона в каждой вершине полюсной диаграммы рис. 1, иллюстрирующей механизм срыва в реакции 19 F(J_A)(α , t) 20 Ne(J_B). Как показано в предыдущем разделе, в вершине 20 Ne(J_B) = 19 F(J_A) + p необходимо определить СА для J_A = $1/2^+$, $5/2^+$, $3/2^+$ и J_B = 0^+ , 2^+ , 4^+ .

В левой вершине диаграммы рис. 1

$$CA^{\alpha \to t+p} = \sqrt{2}.$$
 (1)

В правой вершине диаграммы рис. 1 СА зависит от орбитального Λ и полного j моментов, уносимых протоном со спином s=1/2. Для всех состояний начального и конечного ядер $A={}^{19}$ F, $B={}^{20}$ Ne используем спектроскопию ядер 1d-2s-оболочки в модели Нильссона [9]. Согласно [10] $CA_{\Lambda si}^{J_A \to J_A + p}$ определяется выражением

$$CA_{\Lambda sj}^{J_B \to J_A + p} = \left(\frac{B}{A}\right)^{N_p/2} \cdot \mathfrak{I}_{N\Lambda s=1/2}^{J_B \to J_A} \cdot \langle T_A \tau_A T_p \tau_p | T_B \tau_B \rangle \times$$

$$\times \sqrt{(2j+1)(2J_A+1)(2L_B+1)(2S_B+1)} \times$$

$$\times \left\{ L_A \quad S_A \quad J_A \atop \Lambda \quad 1/2 \quad j \atop L_B \quad S_B \quad J_B \right\}, \quad (2)$$

где $(B/A)^{N_p/2}$ — множитель отдачи, N_p — главное квантовое число отделяемого протона, $L_{A(B)}, S_{A(B)}, J_{A(B)}, T_{A(B)}$ — орбитальные моменты, спины, полные моменты и изоспины ядер A(B); $\mathfrak{F}_{N_p\Lambda_{s=1/2}}^{J_B\to J_A}$ — интегралы перекрывания их волновых функций (ВФ) и $\Psi_{N_p\Lambda\mu}(\mathbf{r}_p-\mathbf{R}_A)\cdot\chi_p$ — ВФ относительного движения протона и ядра A с моментом Λ,χ_p — его спин-орбитальная ВФ.

Нильссоновская ВФ $|NJ\Omega\rangle$ [9] имеет три сохраняющихся квантовых числа: главное квантовое

число N, полный спин ядра J и его проекция Ω на ось симметрии ядра. Эта функция для каждого J может быть представлена в виде суперпозиции ВФ нильссоновских орбиталей $|N_i\Omega_i\rangle$, разложенных по ортонормированному базису одночастичных собственных функций $|N_il_i\mu_i\sigma_i\rangle$ (l_i,μ_i-3) начения орбитального момента нуклона и его проекции, σ_i-3 начения проекции спина, $\mu_i+\sigma_i=\Omega_i$) гамильтониана, учитывающего спинорбитальное взаимодействие и деформацию:

$$|NJ\Omega\rangle \equiv \sum_{i} |\Omega_{i}\rangle = \sum_{N_{i}l_{i}\mu_{i}} a_{l_{i}\mu_{i}\sigma_{i}} |N_{i}l_{i}\mu_{i} + \sigma_{i} = \Omega_{i}\rangle.$$
 (3)

В (3) $N = \sum_{i} N_{i}$, для ядер 1d—2s-оболочки $N_{i} = 2$.

При конструировании ВФ ядер в основных состояниях мы учитывали характеристики соседних ядер. Выбор орбиталей ВФ для возбужденных состояний 19 F и 20 Ne отражает их энергии возбуждения.

Ядро ¹⁹ F в основном состоянии ($J_A = 1/2^+$) в модели Нильссона мы рассматривали как остов ¹⁸ О, в деформированном потенциале которого находится протон. ВФ ядра ¹⁸ О(L_1 , $S_1 = 0$, $T_1 = 1$) соответствует конфигурации (сферический кор ¹⁶ О не учитываем) $|(\mathbb{N}_2 5)^{2(2T_1+1)(2S_1+1)}L_1:\Omega_1=0\rangle$, где $T_1=1$, $S_1=0$. ВФ ¹⁹ F($J_A=1/2^+$, $L_A=0$, $T_A=1/2$, $S_A=1/2$) определяем как антисимметричную комбинацию низших орбиталей (\mathbb{N}_2 5)² и (\mathbb{N}_2 6), содержащую протон с L_2 , $T_2=S_2=1/2$:

$$\begin{split} \Psi_{^{19}\text{F}}(J_A &= 1/2^+, \Omega = 1/2) = \\ &= \sum_{L_1} \left| (\mathbb{N}_2 \ 5)^{2(2T_1+1)(2S_1+1)} L_1 : \Omega_1 = 0, \right. \\ &(\mathbb{N}_2 \ 6)^{(2T_2+1)(2S_2+1)} L_2 : \Omega_2 = 1/2 \right\rangle = \\ &= \left(\frac{3}{1} \right)^{1/2} \langle S_1 \sigma_1 S_2 \sigma_2 | S_A \sigma_A \rangle \langle T_1 \tau_1 T_2 \tau_2 | T_A \tau_A \rangle \times \\ &\times \sum_{L_1} \langle L_1 0 L_2 0 | L_A 0 \rangle \cdot \left| (\mathbb{N}_2 \ 5)^{2(2T_1+1)(2S_1+1)} L_1 : \Omega_1 = 0 \right\rangle \times \\ &\times \left| (\mathbb{N}_2 \ 6)^{(2T_2+1)(2S_2+1)} L_2 : \Omega_2 = 1/2 \right\rangle, \end{split}$$

Таблица 1. Коэффициенты связи каналов в реакции 19 F(α , t) 20 Ne

$E\Lambda$ -переход	$\mathrm{KC}_{\mathrm{кулон}},e^2\Phi_{\mathrm{M}}{}^4$	$KC_{\text{ядер}}, e^2 \Phi_{\text{M}}^4$
$19 \text{F}(5/2^+ \to 1/2^+)$	11.3	2.3
$^{19}\text{F}(3/2^+ \to 5/2^+)$	10.5	2.0
$^{19}\text{F}(5/2^+ \to 5/2^+)$		3.3
20 Ne(2 ⁺ \to 0 ⁺)	18.17	$\beta_2 = 0.45, \beta_4 = 0.15$

учитывая конкретные значения $S_i, T_i (i = 1, 2),$ $L_1 = L_2 = 0, 2,$ получим

$$\begin{split} \Psi_{^{19}\text{F}}(J_A &= 1/2^+, \Omega = 1/2) = \\ &= -\sqrt{2} \Big\{ \big| (\text{Ne } 5)^{2 \, 31} S : \Omega_1 = 0 \big\rangle \cdot a_{200+}^{6(^{19}\text{F})} |200+\rangle + \\ &+ \frac{1}{\sqrt{5}} \big| (\text{Ne } 5)^{2 \, 31} D : \Omega_1 = 0 \big\rangle \cdot a_{220+}^{6(^{19}\text{F})} |220+\rangle \Big\}, \quad (4a) \end{split}$$

где
$$a_{200+}^{6(^{19}\text{F})} = 0.576, a_{220+}^{6(^{19}\text{F})} = 0.817$$
 [9].

ВФ 19 F($J_A = 5/2^+$, 0.197 МэВ) определяется переходом протона с орбитали (№ 6) на орбиталь (№ 5) (разница энергий орбиталей практически совпадает с энергией этого состояния 0.197 МэВ [7]):

$$\Psi_{^{19}\text{F}}(J_A = 5/2^+, \Omega = 5/2) =$$

$$= |(\mathbb{N}_2 5)^{3(2T+1)(2S+1)}L : \Omega = 5/2\rangle. \quad (46)$$

ВФ ¹⁹ $F(J_A = 3/2^+)$, $E^* = 1.557$ МэВ определяется переходом протона с орбитали (№ 6) на орбиталь (№ 8) с разницей энергий орбиталей, близкой к энергией возбуждения. По аналогии с (4а) получаем

$$\begin{split} \Psi_{^{19}\text{F}}(J_A &= 3/2^+, \Omega = 3/2) = \\ &= -\sqrt{2}a_{222^-}^{8(^{19}\text{F})} \cdot \left\{ \left| (\text{N}_{\text{\tiny $}} 5)^2 \,^{31}S : \Omega_1 = 0 \right\rangle \times \right. \\ &\times \left| (\text{N}_{\text{\tiny $}} 8)^{22}D : \Omega_2 = 3/2 \right\rangle + \left\langle 2220|22 \right\rangle \times \\ &\times \left| (\text{N}_{\text{\tiny $}} 9)^2 \,^{31}D : \Omega_1 = 0 \right\rangle \times \\ &\times \left| (\text{N}_{\text{\tiny $}} 9)^2 \,^{22}D : \Omega_2 = 3/2 \right\rangle \right\}, \quad \text{(4B)} \end{split}$$

где
$$a_{222-}^{8(^{19}\text{F})} = -0.944$$
 [9].

ВФ основного состояния 20 Ne в модели Нильссона при $\beta_2=0.42$ —0.7 [7] содержит заполненную орбиталь (№ 5) 4 , коэффициент $a_{222+}^{5(^{20}\text{Ne})}=1$,

$$\Psi_{^{20}\text{Ne}}(J_B = 0^+, \Omega = 0) =$$

$$= |(N_{\odot} 5)^{4(2T+1)(2S+1)}S : \Omega = 0\rangle, \quad (5a)$$

где T = S = 0. ВФ 20 Ne($J_B = 2^+$) с той же деформацией может быть сконструирована путем перехода нуклона из орбитали (\mathbb{N}_2 5) в свободную орби-

таль (№ 11), принадлежащую 1 $d_{3/2}$ -оболочке:

$$\begin{split} \Psi_{^{20}\mathrm{Ne}}(J_B = 2^+, \Omega = 2) &= \\ &= \sum_{L_1 = 2L_2} \left| (\mathbb{N}_2 \ 5)^{3(2T_1 + 1)(2S_1 + 1)} D, \right. \\ &\left. (\mathbb{N}_2 \ 11)^{(2T_2 + 1)(2S_2 + 1)} L_2 : \Omega_2 = -1/2 \right\rangle = \\ &= \left(\frac{4}{1} \right)^{1/2} \langle S_1 \sigma_1 S_2 \sigma_2 |00\rangle \langle T_1 \tau_1 T_2 \tau_2 |00\rangle \times \\ &\times \sum_{L_2} \langle 22L_2 0 | 22\rangle \cdot \left| (\mathbb{N}_2 \ 5)^{3 \ 22} D : \Omega_1 = 5/2 \right\rangle \times \\ &\times \left| (\mathbb{N}_2 \ 11)^{22} L_2 : \Omega_2 = -1/2 \right\rangle, \end{split}$$

$$S_1 = S_2 = 1/2$$
, $T_1 = T_2 = 1/2$. В результате

$$\Psi_{^{20}\text{Ne}}(J_B = 2^+, \Omega = 2) = a_{200-}^{11(^{20}\text{Ne})} | (N_{\odot} 5)^3 \Omega_1 =$$

$$= 5/2 |200-\rangle + a_{220-}^{11(^{20}\text{Ne})} | (N_{\odot} 5)^3 \Omega_1 =$$

$$= 5/2 |220-\rangle \cdot \langle 2220|22 \rangle, \quad (56)$$

где
$$a_{200-}^{11(^{20}\text{Ne})} = -0.830, a_{220-}^{11(^{20}\text{Ne})} = 0.602$$
 [9].

ВФ 20 Ne($J_B=4^+$) конструируется путем перехода нуклона из орбитали (№ 5) в свободную орбиталь (№ 8), принадлежащую $1d_{3/2}$ -оболочке. Выполняя преобразования, такие же, как для ВФ (56), получаем

Ψ_{20Ne}(
$$J_B = 4^+, \Omega = 4$$
) =
= $a_{222-}^{8(^{20}\text{Ne})} \cdot |(N_{2} 5)^3 : \Omega_1 = 5/2\rangle \cdot |222-\rangle$, (5B)

где коэффициент $a_{222-}^{8(^{20}\mathrm{Ne})} = -1$ [9]. Используя ВФ (4), (5), с помощью техники

Используя ВФ (4), (5), с помощью техники генеалогических коэффициентов для ядер 1d-оболочки [11] мы рассчитали интегралы перекрывания $\mathfrak{I}_{N_p\Lambda s}^{J_B \to J_A}$ и $\mathrm{CA}_{\Lambda sj}^{J_B \to J_A + p}$ (3) в модели Нильссона (табл. 2).

2.3. Выбор параметров оптических потенциалов

Стартовые параметры ОП взяты из [12]. Приведенные там параметры, хорошо описывающие угловое распределение упругого рассеяния очастиц с энергией 25 МэВ в передней полусфере, варьировались — незначительно менялась глубина потенциалов.

Тритонные ОП выходного канала и канала кор—кор-взаимодействия $t + {}^{19}$ F определены как глобальные оптические потенциалы [13] с учетом энергии возбуждения ядра 20 Ne. Конкретные значения использованных нами параметров приведены в табл. 3.

Канал распада	J_B	Λ	j	$CA^{J_B o J_A + p}_{_{\Lambda sj}}$
	0+	0	1/2	-0.393
$^{20}\text{Ne}(J_B) \to ^{19}\text{F}(1/2^+) + p$	2+	2	3/2	0.168
		2	5/2	0.206
	0+	2	1/2	0.316
		0	1/2	-0.455
$^{20}\text{Ne}(J_B) \to ^{19}\text{F}(5/2^+) + p$	2+	2	3/2	0.088
$\Gamma(3/2) + p$		2	5/2	0.168
	4+	2	3/2	-0.447
		2	5/2	-0.316
	0+	2	1/2	-0.238
	2+	0	1/2	-0.107
$^{20}\text{Ne}(J_B) \to ^{19}\text{F}(3/2^+) + p$		2	3/2	-0.219
		2	5/2	-0.322
	4+	2	5/2	-0.534

Таблица 2. Спектроскопические амплитуды протонов в вершине распада $^{20}{\rm Ne}(J_B) \to {}^{19}{\rm F}(J_A) + p$

Таблица 3. Параметры ОП во входном, выходном каналах реакции 19 $F(\alpha, t)^{20}$ Ne и канале кор-кор-взаимодействия $t+^{19}$ F

Канал	<i>V</i> *, МэВ	R_V^*, r_V, Φ_M	a_V, Φ_{M}	<i>W</i> , МэВ	<i>WD</i> , МэВ	R_W, r_W, Φ_M	a_W, Φ_M	$R_c, \Phi_{\rm M}$
$\alpha + {}^{19}F$	204.3	1.42	0.596	17.06		1.57	0.699	
$t + {}^{20}\text{Ne } 20.5 \text{ M} \ni \text{B}$	141.201	0.98	0.792	2.04	11.79	1.37	0.801	1.3
$t + {}^{20}\text{Ne} 19.0 \text{ M} \ni \text{B}$	142.218	0.98	0.792	1.97	11.88	1.37	0.801	1.3
$t + {}^{20}\text{Ne} 15.65 \text{ M} \ni \text{B}$	144.49	0.98	0.792	1.87	12.03	1.37	0.801	1.3
$t + {}^{19}\text{F} 30.3 \text{ M} \ni \text{B}$	134.56	0.988	0.792	2.46	11.26	1.37	0.801	1.3

3. ДИФФЕНЦИАЛЬНЫЕ СЕЧЕНИЯ РЕАКЦИИ 19 F $(\alpha, t)^{20}$ Ne

Определенные в предыдущем разделе расчетные параметры использованы нами при сопоставлении экспериментальных и расчетных угловых распределений дифференциальных сечений (ДС) реакции 19 F(α , t) 20 Ne(g. s.; 2^+ ,1.634 MэB; 4^+ , 4.247 МэВ) (рис. 3). Рассчитанные ДС не содержат дополнительных нормировок.

Как видно из рисунка, расчетные кривые вплоть до углов $\theta_t < 120^\circ$ передают форму экспериментальных ДС для всех состояний 20 Ne. В этой области θ_t расчетные ДС для состояния 2^+ совпадают с экспериментальными не только по форме, но и по величине. Для основного состояния 20 Ne величина рассчитанного ДС несколько завышена, а для 4^+ — занижена по сравнению с экспериментальным. Дальнейшая корректировка возможна за счет варьирования глубины ОП в начальном и конечном каналах. Для корректного описания экспериментальных ДС реакции 19 F(α , t) 20 Ne при $\theta_t > 120^\circ$ необходимо учитывать кластерную структуру ядер 19 F и 20 Ne, связанный

с ней механизм передачи тяжелого кластера ¹⁶O, а также вклад механизма составного ядра.

4. КОРРЕЛЯЦИОННЫЕ ХАРАКТЕРИСТИКИ ЯДРА $^{20}{ m Ne}(2^+)$

Исследованные в [1] $t\gamma$ -угловые корреляции в реакции 19 $F(\alpha, t)^{20}$ $Ne(2^+)$ при энергии $E_\alpha = 30.3$ МэВ позволили определить значения полного набора спин-тензоров $\rho_{k\kappa}(\theta_t)$ четного ранга k матрицы плотности ядра 20 $Ne(2^+)$ и на их основе — ряд корреляционных характеристик, таких как тензоры ориентации мультипольных моментов $t_{k\kappa}(\theta_t)$ [2], тензорная поляризация и ее коэффициенты $F_k(\theta_t)$ [5] для четных рангов k, определяемых как выстроенности.

В [1] экспериментальные спин-тензоры $\rho_{k\kappa}(\theta_t)$ определены в системе координат (СК) с осью квантования Z, ориентированной вдоль пучка α -частиц, и плоскостью ZX, совпадающей с плоскостью реакции. Для расчета корреляционных характеристик необходим перевод $\rho_{k\kappa}(\theta_t)$ в те СК, в которых определены эти характеристики. Такой перевод осуществляется с помощью D-функций

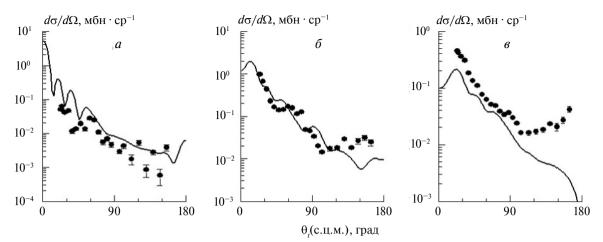


Рис. 3. Дифференциальные сечения реакции 19 F(α , t) 20 Ne для состояний 20 Ne: a - g. s.; $\delta - 2^+$, 1.634 MэB; $\epsilon - 4^+$, 4.247 MэB. Точки — эксперимент [1], кривые — расчет в методе ССВА (код FRESCO [4]).

Вигнера [14] тремя последовательными поворотами на определенные углы Эйлера.

4.1. Тензоры ориентации мультипольных моментов

Тензоры ориентации мультипольных моментов $t_{k\kappa}(\theta_t)$ ядра $^{20}\mathrm{Ne}(2^+)$ определяются в СК с осью квантования, направленной по импульсу ядра отдачи в плоскости реакции. Переход в эту СК из экспериментальной осуществляется с помощью $D_{\mathbf{k}'\kappa}^{k}$ (π , π – θ_t , π) функции Вигнера

$$t_{k\kappa}(\theta_t) = \frac{1}{\sqrt{(2k+1)(2J+1)}} \times \frac{\sum_{\pm \kappa'} t_{k\kappa'}(\theta_y) \cdot D_{\kappa'\kappa}^k(\pi, \pi - \theta_t, \pi)}{\rho_{00}(\theta_t)}.$$
 (6)

Экспериментальные и рассчитанные угловые зависимости $t_{k\kappa}(\theta_t)$ для k=2,4 приведены на рис. 4.

Как видно из рисунка, тензоры ориентации знакопеременны. Имеет место качественное согласие экспериментальных и расчетных $t_{2\kappa}(\theta_t)$, $t_{4\kappa}(\theta_t)$ во всей угловой области вылета тритонов.

4.2. Выстроенности $F_k(\theta_t)$ ядра $^{20}Ne(2^+)$

Выстроенности $F_k(\theta_t)$ (четные $k=2,...,2J_B,0\le |F_k(\theta_t)|\le 1$) определяются как полиномы от степеней средних значений компонент спина $\langle J_B \rangle$ {моментов матрицы плотности $\sum_M M^k \rho_{J_B}(M,M)$ }. Максимальные значения $F_k(\theta_t)$ достигаются при $M=J_B$. В случае изотропного распределения спинов $F_k(\theta_t)$ равны нулю. Для ядра $^{20}\mathrm{Ne}(2^+)$ мы рассматриваем квадрупольную $F_2(\theta_t)$ и гексадекапольную $F_4(\theta_t)$ выстроенности.

Выстроенности $F_k(\theta_t)$ ядра определяются в СК с осью квантования, перпендикулярной

плоскости реакции, и осью OX, направленной по падающему пучку. Получим эти характеристики с помощью тензоров $t_{k\kappa}(\theta_t)$, используя $D_{\kappa'0}^k(\pi/2,\pi/2,2\pi-\theta_t)$ функции Вигнера:

$$F_{2}(\theta_{y}) = \sqrt{\frac{(J+1)(2J+3)}{J(2J-1)(2J+1)}} \sum_{\pm \kappa'} t_{2\kappa'} (\theta_{y}) \times D_{\kappa'0}^{2} (\pi/2, \pi/2, 2\pi - \theta_{y}), \quad (7)$$

$$F_4(\theta_y) = \frac{3}{2} \sqrt{\frac{(2J+3)(2J+2)(2J+4)(2J+5)}{J(J-1)(2J-1)(2J-3)(2J+1)}} \times \sum_{l\neq l} t_{4\kappa'}(\theta_y) \cdot D_{\kappa'0}^4 \left(\pi/2, \pi/2, 2\pi - \theta_y\right). \quad (8)$$

С помощью (6)—(8) мы рассчитали выстроенности ядра 20 Ne (2^+) , представленные на рис. 5.

Как видно из рисунка, и экспериментальные, и теоретические выстроенности $F_2(\theta_t)$, $F_4(\theta_t)$ неотрицательны при всех углах вылета тритонов, т.е. имеют постоянную ориентацию относительно оси квантования в СК, перпендикулярной плоскости реакции.

Рассчитанная квадрупольная выстроенность $F_2(\theta_t)$ при $\theta_t < 50^\circ$ имеет форму, воспроизводящую экспериментальную, но примерно в 2 раза меньшую по величине. При больших углах наблюдается согласие рассчитанной и экспериментальной выстроенности $F_2(\theta_t)$ как по форме, так и по величине. Максимальное значение $F_2(\theta_t)$ (и в расчетах, и в эксперименте с учетом ошибок) не превышает 0.14, что соответствует изотропному распределению спинов в 20 Ne(2^+).

Экспериментальная и рассчитанная гексадекапольная выстроенность $F_4(\theta_t)$ совпадают между

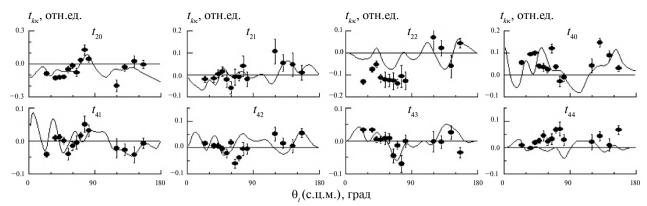


Рис. 4. Тензоры ориентации квадрупольного $t_{2\kappa}(\theta_t)$ и гексадекапольного $t_{4\kappa}(\theta_t)$ моментов ядра 20 Ne(2 +): точки — экспериментальные данные [1]; кривые — рассчитанные в методе CCBA (код FRESCO).

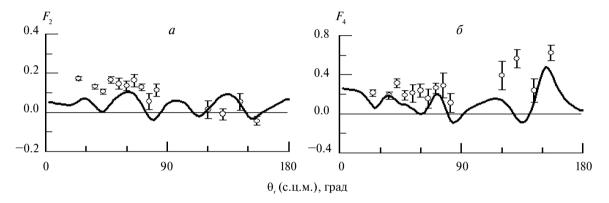


Рис. 5. Квадрупольная $F_2(\theta_t)$ (*a*) и гексадекапольная $F_4(\theta_t)$ (*б*) выстроенности ядра 20 Ne($^{2+}$): точки — эксперимент [1]; кривые — расчет в методе ССВА (код FRESCO).

собой и по форме, и по величине при $\theta_t < 120^\circ$. Максимальная величина $F_4(\theta_t)$ в этой области углов ≈ 0.27 , т.е. изотропность распределения спинов в $^{20}{\rm Ne}(2^+)$ нарушается слабо. В области углов $120^\circ < \theta_t < 150^\circ$ рассчитанная выстроенность $F_4(\theta_t)$ меньше экспериментальной. При $\theta_t \approx 160^\circ$ обе $F_4(\theta_t)$ имеют значительный максимум ≈ 0.45 , что свидетельствует о частичном нарушении изотропности распределения спинов в $^{20}{\rm Ne}(2^+)$ при $\theta_t \approx 160^\circ$.

5. ЗАКЛЮЧЕНИЕ

При рассмотрении характеристик реакции 19 F(α , t) 20 Ne с учетом прямого механизма срыва протона со связью каналов по методу ССВА (код FRESCO) мы сумели получить в удовлетворительном согласии с экспериментом не только дифференциальные сечения реакции 19 F(α , t) 19 F (g. s., 2^+ , 4^+), но и угловые зависимости корреляционных характеристик возбужденного ядра 20 Ne(2^+ , 1.634 MэB). Все указанные величины рассчитывались нами с одними и теми же параметрами расчета: КС различных каналов в ССВА, СА протона во всех состояниях ядер

 19 F, 20 Ne, учитываемых при связи каналов, и параметров ОП во всех каналах.

Расчетные ДС вплоть до углов $\theta_t < 120^\circ$ передают форму экспериментальных для всех состояний 20 Ne, а для состояния 2^+ совпадают с экспериментальными не только по форме, но и по величине. Для описания экспериментальных сечений при $\theta_t > 120^\circ$, по-видимому, необходимо учитывать кластерную структуру ядер 19 F, 20 Ne и механизм передачи тяжелого кластера 16 O в реакции 19 F(α , t) 20 Ne.

Тензоры поляризации $t_{2\kappa}(\theta_t)$, $t_{4\kappa}(\theta_t)$ знакопеременны и качественно согласуются с экспериментальными во всей угловой области.

Выстроенности $F_2(\theta_t)$, $F_4(\theta_t)$ (экспериментальные и теоретические) положительны при всех углах вылета тритонов, т.е. имеют постоянную ориентацию относительно оси квантования. Рассчитанная $F_2(\theta_t)$ качественно согласуется с экспериментальной при всех углах вылета тритонов, а ее величина соответствует изотропному распределению спинов в 20 Ne(2^+). Рассчитанная гексадекапольная выстроенность $F_4(\theta_t)$ согласуется с экспериментальной при θ_t < 120° , изотроп-

ность распределения спинов в $^{20}\mathrm{Ne}(2^+)$ в этой области углов вылета тритонов нарушается слабо. При больших углах θ_t обе $F_A(\theta_t)$ имеют значительный максимум, что позволяет утверждать о частичном нарушении изотропности распределения спинов в 20 Ne(2^+).

ФИНАНСИРОВАНИЕ РАБОТЫ

Исследование выполнено в рамках государственного задания МГУ имени М.В. Ломоносова.

СПИСОК ЛИТЕРАТУРЫ

- 1. А. В. Игнатенко, В. М. Лебедев, Н. В. Орлова, А. В. Спасский, ЯФ **58**, 208 (1995) [Phys. At. Nucl. **58**, 166 (1995)].
- 2. Н. С. Зеленская, И. Б. Теплов, Характеристики возбужденных состояний ядер и угловые корреляции в ядерных реакциях (Энергоатомиздат, Москва, 1995).
- 3. P. D. Kunz and E. Rost, Comput. Nucl. Phys. **2**, 88 (1993); https://doi.org/10.1007/ 978-1-4613-9335-1 5
- 4. I. J. Tompson, Comput. Phys. Rep. 7, 167 (1988);
- http://www.fresko.org.uk/
 5. Г. Р. Хуцишвили, УФН **53**, 381 (1954); doi: 10.3367/UFNr.0053.195407b.0381 [Usp. Fiz. Nauk **53**, 381 (1954)].

- 6. A. W. Obst and K. W. Kemper, Phys. Rev. C 8, 1682 (1973); https://doi.org/10.1103/PhysRevC.8.1682
- 7. Centre for Photonuclear Experiments Data, http://cdfe.sinp.msu.ru/
- 8. R. A. Radhi, A. A. Alzubadi, and E. M. Rashed, Nucl. Phys. A 947, 12 (2016); https://doi.org/10.1016/j. nuclphysa.2015.12.002
- 9. С. Г. Нильссон, Связанные состояния индивидуальных нуклонов в сильно деформированных ядрах, в кн. Деформация атомных ядер (ИИЛ, Москва, 1958), c. 232 [S. G. Nilsson, Dan. Mat. Fys. Medd. **29**, 1 (1955).
- 10. Н. С. Зеленская, Вестн. Моск. ун-та, Сер. Физика. Астрономия 75, 33 (2020) [Moscow Univ. Phys. Bull. 75, 39 (2020)].
- 11. H. A. Jahn and H. Van Wieringer, 209. Pros. Rov. Soc. Α 502 (1951): https://doi.org/10.1098/rspa.1951.0222
- 12. T. P. Kriick, N. M. Hintz, and D. Dehnhard, Nucl. Phys. A 216, 549 (1973); doi: 10.1016/0375-9474(73)90169-3
- 13. D. Y. Pang, W. M. Dean, and A. M. Mukhamedzhanov, Phys. Rev. C 91, 024611 (2015); doi: 10.1103/PhysRevC.91.024611
- 14. А. Эдмонс, Угловые моменты в квантовой механике, в кн. Деформация атомных ядер (ИИЛ, Москва, 1958), с. 305.

CORRELATION CHARACTERISTICS OF THE ²⁰Ne(2⁺, 1.634 MeV) NUCLEUS, FORMED IN THE ¹⁹F(α , t)²⁰Ne REACTION AT $E_{\alpha} = 30.3$ MeV

© 2025 L. I. Galanina¹⁾, N. S. Zelenskaya¹⁾, V. M. Lebedev¹⁾, N. V. Orlova¹⁾, A. V. Spassky¹⁾

¹⁾Lomonosov Moscow State University, Skobeltsyn Research Institute of Nuclear Physics, Moscow, Russia

The differential cross sections of the $^{19}F(\alpha, t)^{20}Ne(g. s., 2^+, 4^+)$ reaction studied at the cyclotron of the MSU Institute of Nuclear Physics, tg-angular correlations in the reaction $^{19}F(\alpha, t)^{20}Ne(2^+)$ at the energy $E_q = 30.3$ MeV and the tensors of the orientation of the multipole moments and the alignments $F_k(\theta_t)$ of the ²⁰Ne(2⁺) nucleus reconstructed on their basis are compared with the calculated ones under the assumption of a direct mechanism of proton stripping taking into account the coupling of channels using the Coupled Channels Born approximation. A set of calculation parameters necessary for such a reaction mechanism is established and their specific values are determined. The calculated differential cross sections of the reaction 19 F(α , t) 20 Ne for all states of the rotational band agree with the experimental ones at $\theta_t < 120^{\circ}$, where the direct mechanism makes the main contribution. In the same region of θ_t the calculated $F_2(\theta_t)$ and $F_4(\theta_t)$ of the ²⁰Ne(2⁺) nucleus agree satisfactorily with the experimental ones. It was found that their value at $\theta_t < 120^{\circ}$ is small, so the isotropy of the spin distribution in $^{20}Ne(2^+)$ is not violated. At large angles θ_t both the experimental and calculated values of F_4 are about 0.5, that indicates a partial violation of this isotropy.