УДК 539.143

ОПРЕДЕЛЕНИЕ СПЕКТРА ЭНЕРГИИ ВОЗБУЖДЕНИЯ 6 Li В РЕАКЦИИ $n+^6$ Li

© 2025 г. М. В. Мордовской $^{1),*}$, А. А. Каспаров $^{1),**}$, А. А. Афонин $^{1)}$, А. И. Драчев $^{1)}$, Ю. М. Бурмистров $^{1)}$, В. В. Мицук $^{1)}$, В. Н. Пономарев $^{1)}$, С. И. Поташев $^{1),2)}$

Поступила в редакцию 01.10.2024 г.; после доработки 01.10.2024 г.; принята к публикации 08.10.2024 г.

На нейтронном канале РАДЭКС ИЯИ РАН при энергии нейтронов 40—60 МэВ проведен эксперимент по исследованию кластерной структуры 3 He + t ядра 6 Li в реакции 6 Li(n; 3 He n)t. Получен спектр энергии возбуждения 6 Li в диапазоне $E_x=16$ —50 МэВ. При энергии возбуждения $E_x=16.6$ МэВ обнаружен резонанс с $\Gamma=0.7$ МэВ, а в интервале $E_x=30$ —50 МэВ обнаружены два широких резонанса $E_x=35.9$ и $E_x=43.1$ МэВ с $\Gamma=8.4$ и $\Gamma=5.4$ МэВ соответственно. Все уровни наблюдаются впервые.

Ключевые слова: нейтронный канал РАДЭКС, реакция 6 Li(n; 3 He n)t, кластерная структура

DOI: 10.31857/S0044002725010143, EDN: GRSIJX

1. ВВЕДЕНИЕ

Кластеризация является интереснейшим явлением как в структуре ядер, так и в процессах их возбуждения [1]. Существование альфакластеров доказано не только в легких, но и в тяжелых ядрах. Ядерные кластеры, отличные от альфа-кластеров, наблюдаются и играют заметную роль как для адекватного описания механизмов ядерных реакций, так и структуры ядер [2]. Для нейтронно-избыточных ядер имеются теоретические [3] и экспериментальные [4, 5] основания для предположения о существовании динейтронного кластера.

Ядра ⁶Не и ⁶Li представляют значительный экспериментальный и теоретический интерес изза кластерной структуры низколежащих состояний, рассматриваемых как ⁴He + 2n и ⁴He + d соответственно. В то же время в системе A = 6 при высоких энергиях возбуждения возможны тринуклонные квазимолекулярные состояния t + t или $t + {}^{3}$ He. Существование таких кластеров в изобарах A = 6 было теоретически предположено несколько десятилетий назад [6]. Тринуклонные кластеры t и 3 He являются фермионами и аналогичны нейтронам и протонам в ядерных системах соответственно, и существенно отличаются от кластеров, которые являются бозонами (например, альфа-кластеры).

Спектроскопическая информация о низколежащих состояниях в легких ядрах известна в большей степени с достаточной точностью, в то время как информация о высоко возбужденных состояниях известна гораздо слабее. Главным образом, это связано с более коротким временем жизни таких состояний, в связи с чем их энергетические ширины значительно больше и поэтому получить энергию их возбуждения с высокой точностью достаточно трудно.

Высоко возбужденные состояния ⁶Li исследовались в ряде работ (табл. 1). Так в работе [7] в реакции 7 Li(6 Li, 7 Li) 6 Li при энергии $E(^{6}$ Li) = 93 МэВ для ядра 6 Li была обнаружена широкая структура при энергии $E_x \approx 20~{\rm M}{
m 3}{\rm B},$ которая рассматривалась как квазимолекулярное состояние 3 He + t. В работе [8] в реакции 7 Li(3 He, α) при энергии $E(^{3}$ He) = 450 МэВ установлены два широких резонанса ⁶Li со структурой $t + {}^{3}{\rm He}^{2}$ при $E_{x} = 18.0 \pm 0.5$ и $E_x = 22.0 \pm 1.0$ МэВ. В работе [9] в реакции 3 He(7 Li, α) 6 Li на пучке 7 Li с энергией 31.2 МэВ наблюдались возбужденные состояния ⁶Li при 12.45, 15.31 и 17.29 МэВ. Последнее состояние с шириной ~0.8 МэВ обнаружено выше порога развала 6 Li на $t + {}^{3}$ He. В работе [10] наблюдались два резонанса 6 Li при E_x 21.90 МэВ в реакции 3 H(α , 3 H 3 He)n при энергии $E_{\alpha} = 67.2 \text{ M} \ni \text{B}.$

Все рассмотренные работы [7-10] проводились на пучках заряженных частиц, с хорошо известной энергией. В настоящей работе представлены результаты кинематически полного эксперимента 6 Li(n; 3 He n)t, проведенного на нейтрон-

 $^{^{1)}}$ Институт ядерных исследований Российской академии наук, Москва, Россия.

²⁾ Физический институт имени П.Н. Лебедева Российской академии наук, Москва, Россия.

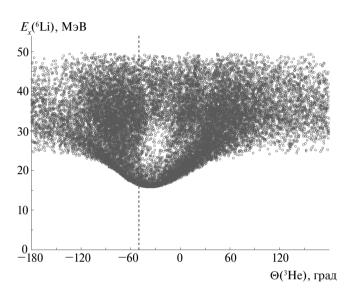
^{*} E-mail: mvmordovsk@mail.ru

^{**} E-mail: kasparov200191@gmail.com

Реакция	Энергия, МэВ	E_x , МэВ	Г, МэВ	Литература
⁷ Li(⁶ Li, ⁷ Li) ⁶ Li	93	≈20.0	≈10.0	[7]
7 Li(3 He, αt)	450	$18.0 \pm 0.5 \\ 22.0 \pm 1.0$	5.0 ± 0.5 8.0 ± 1.0	[8]
3 He(7 Li, α) 6 Li	31.2	12.45 ± 0.36 15.31 ± 0.47 17.29	2.5 ± 1.1 3.58 ± 0.29 0.76	[9]
3 H(α , 3 H 3 He) n	67.2	21.30 ± 0.3 21.90 ± 0.4	0.3 0.4	[10]

Таблица 1. Данные об энергиях и ширинах высоко возбужденных уровней ядра ⁶Li

ном канале РАДЭКС Института ядерных исследований Российской академии наук на созданной установке для исследования свойств высоко возбужденных состояний легких ядер [11] при энергии первичных нейтронов 40—60 МэВ.


2. КИНЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ

Кинематическое моделирование эксперимента было проведено с помощью программы, предназначенной для изучения реакций с тремя частицами в конечном состоянии [12]. Программа позволяет проводить выбор геометрии эксперимента, в выбранной геометрии рассчитывать времена пролета и энергии всех вторичных частиц, оценивать как доступную в эксперименте область энергий возбуждения, так и возможное разрешение по энергии возбуждения.

Результаты проведенного моделирования при энергии налетающих нейтронов 50 ± 10 МэВ показали, что регистрация рассеянного нейтрона в интервале углов $-180^{\circ} \leq \Theta_n \leq 180^{\circ}$ позволит исследовать область энергий возбуждения $^6\text{Li*}$ от порога развала ($\sim 15.8 \text{ M} \rightarrow \text{B}$) до $\sim 50 \text{ M} \rightarrow \text{B}$.

На рис. 1 показана двумерная диаграмма зависимости энергии возбуждения ядра 6 Li — $E_x(^6$ Li) от угла регистрации развальной частицы гелий- $3-\Theta(^3$ He), полученная при энергии налетающих нейтронов 50 ± 10 МэВ и угле регистрации рассеянного нейтрона $\Theta_n=80^\circ\pm2^\circ$. Выбор угла регистрации вторичных нейтронов обусловлен максимально возможной длиной времяпролетной базы и особенностями экспериментального зала в месте нахождения экспериментальной установки.

Из рис. 1 видно, что регистрация развальной частицы под разными углами позволяет исследовать различные области энергий возбуждения 6 Li. Рассмотрим дальнейшее моделирование при $\Theta(^3\text{He}) = -50^\circ \pm 1^\circ$. Отметим, что положительным и отрицательным углам соответствуют углы вылета по разные стороны от оси пучка соответственно.

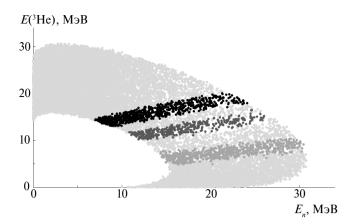


Рис. 1. Двумерная диаграмма $\Theta(^3\text{He}) - E_x(^6\text{Li})$ реакции $n + ^6\text{Li} \rightarrow n + ^3\text{He} + t$. Параметры моделирования: $E_0 = 50 \pm 10 \text{ M} \Rightarrow \text{B}; \Theta_n = 80^\circ \pm 2^\circ$. Положительным и отрицательным углам соответствуют углы вылета слева и справа от оси пучка соответственно. Штриховая линия — выбранный угол регистрации ^3He .

На рис. 2 показаны результаты моделирования процессов демократического развала и развала через возбужденное состояние $^6\text{Li}^* \rightarrow ^3\text{He} + t$ для трех различных состояний с $E_x = 17 \pm 0.4$ МэВ, $E_x = 21 \pm 0.8$ МэВ и $E_x = 25 \pm 1.2$ МэВ. Видно, что события, идущие через возбуждение уровня с конкретной энергией и шириной, занимают определенную (ограниченную) область на диаграмме Далитца $E(^3\text{He}) - E_n$, и могут быть выделены на фоне событий демократического развала.

3. ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

Экспериментальное исследование спектра энергии возбуждения ядра 6 Li в реакции 6 Li(n, 3 He n) 3 H при энергии нейтронов 40–60 МэВ было проведено на нейтронном

Рис. 2. Двумерная диаграмма $E(^{3}\text{He}) - E_{n}$ реакции $n + {}^{6}\text{Li} \rightarrow n + {}^{3}\text{He} + t$ (светло-серые точки) и развала через возбужденное состояние ${}^{6}\text{Li}^* \rightarrow {}^{3}\text{He} + t$ для трех различных состояний с $E_{x} = 17 \pm 0.4$ МэВ (серые точки), $E_{x} = 21 \pm 0.8$ МэВ (темно-серые точки) и $E_{x} = 25 \pm 1.2$ МэВ (черные точки). Параметры моделирования: $E_{0} = 50 \pm 10$ МэВ; $\Theta_{n} = 80^{\circ} \pm 2^{\circ}$; $\Theta(^{3}\text{He}) = -50^{\circ} \pm 1^{\circ}$.

канале РАДЭКС на установке для исследования свойств высоко возбужденных состояний легких ядер [11]. Изменения в настоящих измерениях, в отличие от тестовых, выполненных в 2023 г., касались улучшения защиты кремниевых детекторов от облучения нейтронами и увеличения быстродействия системы сбора информации. Схема экспериментальной установки представлена на рис. 3.

Источником нейтронов служила ловушка пучка протонов с энергией 267 МэВ частотой 50 Гц и длительностью импульса 150 мкс Линейного ускорителя ИЯИ РАН. Нейтроны, образованные в вольфрамовой мишени толщиной 60 мм, коллимировались на длине 12 м и формировали пучок с диаметром ~50 мм на измерительной мишени.

Пучок нейтронов облучал литиевую мишень, расположенную в центре большой вакуумной камеры рассеяния. Мишень представляет собой тонкий слой изотопа 6 Li толщиной \sim 5 мкм, напыленный на полиимидную пленку толщиной 12 мкм. В камере на расстоянии 45 см от измерительной мишени под углом 50° к оси пучка располагался телескоп кремниевых детекторов $\Delta E - E_1 - E_2$ (25, 500, 300 мкм соответственно), предназначенный для регистрации заряженных частиц. Телескоп Si-детекторов размещен в позиции с меньшими полями рассеянных нейтронов и защищен достаточной теневой защитой из свинца, а суммарная толщина кремниевых детекторов перекрывает длину поглощения заря-

женных частиц в исследуемом диапазоне энергий первичных нейтронов.

Вторичные нейтроны регистрировались годоскопом, состоящим из четырех сцинтилляционных детекторов ($5 \times 5 \text{ см}^2$) на основе жидкого сцинтиллятора EJ-301, установленным вне камеры рассеяния на расстоянии в 1.95 м от мишени под углом 80° по другую сторону от оси пучка.

Электроника установки и система сбора информации минимизирована и состоит из предусилителей (ПУ) кремниевых детекторов, быстрых усилителей (БУ) сигналов после ПУ, систем питания детекторов и цифрового сигнального процессора (ЦСП) САЕN DT5742 с передачей информации по оптическому каналу. Сигналы с нейтронных детекторов напрямую подавались на ЦСП, а сигналы с Si-детекторов — через БУ. Сигналы оцифровывались, и затем вычислялись их амплитуды и время появления.

В результате было существенно уменьшено облучение нейтронами Si-детекторов, уменьшено количество наложенных сигналов и увеличена скорость записи информации.

4. ЭКСПЕРИМЕНТАЛЬНЫЕ ДАННЫЕ

Время пролета нейтрона и, соответственно, энергия нейтрона измерялись по разнице времен появления сигнала на E_1 -детекторе и на любом сцинтилляционном. Анализ формы импульса нейтронного детектора (PSD-метод) позволил отделить сигналы, вызванные нейтронами, от сигналов, вызванных гамма-квантами. Энергии заряженных частиц, поглощенные в ΔE - и E-детекторах, определялись по амплитудам сигналов.

На рис. 4 показана полученная в эксперименте двумерная диаграмма потерь энергии в $\Delta E - E_1$ -детекторах. Также на рис. 4 показаны моделированные кривые для различных заряженных частиц $(p, d, t, {}^3{\rm He}, {}^4{\rm He}, {}^6{\rm He})$, рассчитанные с учетом толщин мишени, детекторов и использованных настроек регистрирующей аппаратуры. Во вкладке на рис. 4 представлены потери энергии для детекторов $E_1 - E_2$, на которой хорошо видны локусы для частиц ${}^3{\rm He}$ и ${}^4{\rm He}$, не поглощенные в детекторе E_1 .

Часть интересующей области энергий приходится на обратные ходы локусов, которые достаточно сильно перекрываются. Для разделения перекрывающихся областей применялся метод идентификации частиц и типа события, описанный в [13], требующий анализа формы импульса. На рис. 5a показаны спектры длительностей фронта ($t_{фронт}$) и спада ($t_{спад}$) сигналов (A_1) "быстрого" выхода ПУ детектора E_1 . Видна сложная структура формы, особенно заднего

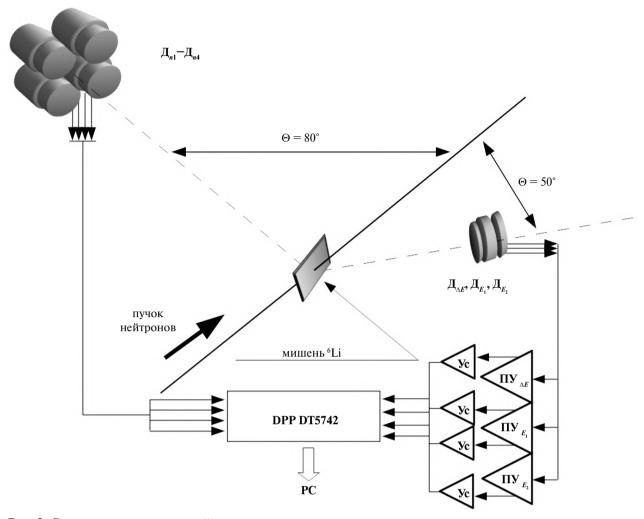
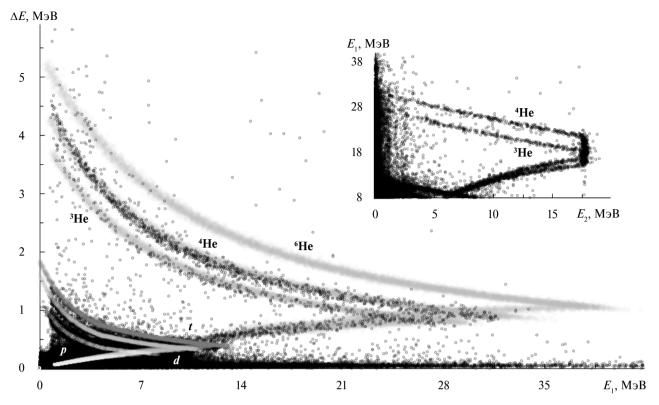
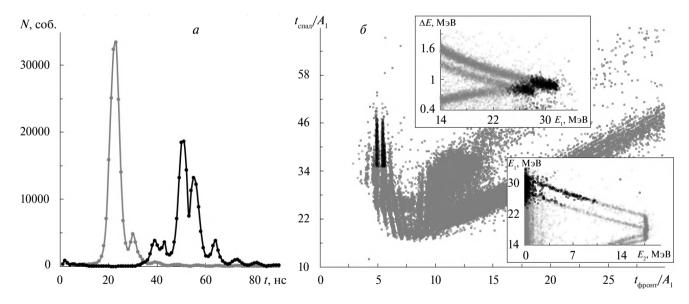


Рис. 3. Схема экспериментальной установки.


фронта. Эта структура зависит от сорта частицы, энергии частицы и факта поглощения или пролета сквозь детектор.

Из значений $t_{\text{фронт}}$, $t_{\text{спал}}$, $A_{\text{сигнал}}$ возможно построение ряда комбинаций (аналог PSD-метода для $n-\gamma$ -разделения). На рис. 5 δ представлен график одной такой комбинации - зависимость $t_{\text{спад}}/A_{\text{сигнал}}$ от $t_{\text{фронт}}/A_{\text{сигнал}}$, а выделенная черным цветом область соотносится с нужным участком обратного хода локусов ³He и ⁴He. Ha вкладках рис. 56 показан пример зависимости выделения событий на локусах ³ Не и ⁴ Не двумерных диаграмм $\Delta E - E_1$ и $E_1 - E_2$ от выделения на этом графике времен формы. Такой метод позволяет достоверно "выпрямлять" локусы. В остальном процедура обработки сигналов была стандартной — вычислялись амплитуды и положения 0.5 от максимума сигнала относительно запускающего сигнала. Для сигналов сцинтилляционного детектора проводилась еще проверка и отбраковка по n— γ -разделению (PSD-метод). В случае наложенных импульсов проводился анализ формы и разделение.


5. ПОЛУЧЕННЫЕ РЕЗУЛЬТАТЫ

В эксперименте по исследованию реакции $n + {}^6{\rm Li} \rightarrow {}^3{\rm He} + t + n$ регистрировались в совпадении заряженные частицы (гелий-3) и вторичные нейтроны. Это позволило восстановить энергию первичного нейтрона (энергетический спектр канала РАДЭКС непрерывен вплоть до $\sim 267~{\rm Mp}$), энергию и угол вылета тритона решением уравнений сохранения энергии и импульса. Таким образом, из накопленного массива данных можно выделять события, относящиеся к различным интервалам энергии первичного пучка.

На рис. 6 показан экспериментальный выход $E_n - E(^3\text{He})$ совпадения для энергии первичных нейтронов 40—60 МэВ. По хорошему заполнению видно, что были соблюдены условия соответствия параметров эксперимента предварительному расчету (см. рис. 2).

Рис. 4. Экспериментальная двумерная диаграмма потерь энергии в $\Delta E - E_1$ - и $E_1 - E_2$ -детекторах. Кривые – результат моделирования для однозарядных (p, d, t) и двухзарядных (3 He, 4 He, 6 He) частиц.

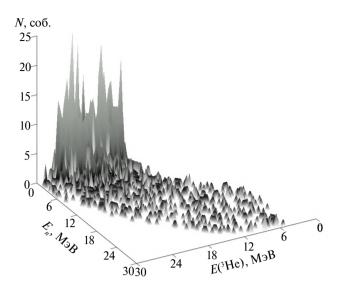
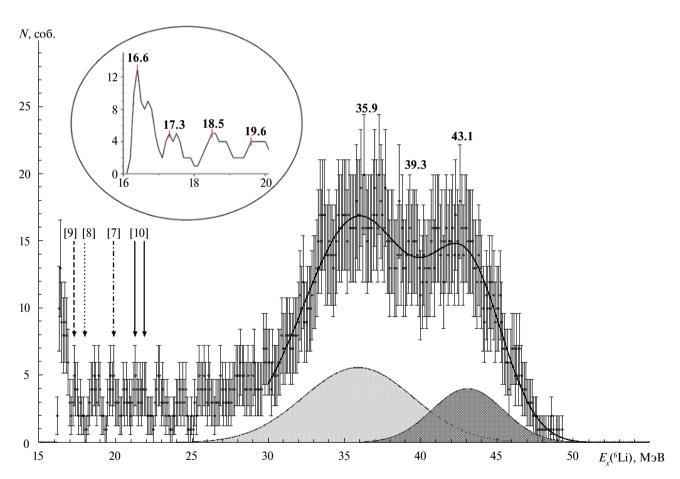


Рис. 5. a — Спектры времен переднего (черная кривая) и заднего (серая кривая) фронтов сигнала детектора E_1 ; δ — комбинация из $t_{\text{фронт}}$, $t_{\text{спад}}$, A_1 и результат выделения на двумерных диаграммах $\Delta E - E_1$ и $E_1 - E_2$.


На рис. 7 показан спектр энергии возбуждения $E_x(^6\text{Li})$ для интервала энергий нейтронного пучка $E_0 = 40{-}60$ МэВ. Стрелками показаны уровни высоко возбужденных состояний ядер ^6Li , полученные в работах [7–10], а на вкладке показана структура при энергиях немного выше порога ($^3\text{He} + t$), определяемая с достаточ-

ной достоверностью как уровни. Статистическая точность позволяет утверждать только о проявлении в этом эксперименте похожих уровней в районе $17-18~\mathrm{M} \odot \mathrm{B}$ и о наличии резонанса при $E_x = 16.6~\mathrm{M} \odot \mathrm{B}$ с $\Gamma = 0.7~\mathrm{M} \odot \mathrm{B}$.

При энергиях возбуждения в интервале $E_x = 30{-}50$ МэВ видны два широких резо-

Рис. 6. Экспериментальная диаграмма $E_n - E(^3\text{He})$ реакции $^6\text{Li}(n; ^3\text{He }n)t$ при энергии первичных нейтронов 40-60 M эВ.

Рис. 7. Спектр энергии возбуждения E_x ядра ⁶Li, полученного в реакции ⁶Li(n; ³He n)t при энергии первичных нейтронов 40–60 МэВ. Стрелками показаны уровни высоко возбужденных состояний ядер ⁶Li, полученные в работах [7–10], на вкладке показана структура при энергиях немного выше порога (³He + t).

нанса $E_x = 35.9$ и $E_x = 43.1$ МэВ с $\Gamma = 8.4$ и $\Gamma = 5.4$ МэВ соответственно. С меньшей определенностью можно указать на наличие промежуточной структуры при $E_x = 39.3$ МэВ. Уровни возбуждения ⁶Li с $E_x = 16.6$, 35.9, 43.1 МэВ в литературе пока не декларировались и наблюдаются впервые.

Для более точных утверждений о структуре высоко возбужденных состояний ядер ⁶Li и для определения свойств уровней необходимо увеличение статистической точности, а также проведение дополнительных измерений с изменением углов регистрации заряженных частиц и нейтронов.

6. ЗАКЛЮЧЕНИЕ

На нейтронном канале РАДЭКС ИЯИ РАН при энергии нейтронов 40—60 МэВ проведен эксперимент по исследованию кластерной структуры 3 Не + t ядра 6 Li в реакции 6 Li(n; 3 Не n)t. В эксперименте по разные стороны от оси пучка регистрировались рассеянные нейтроны в совпадении с продуктами распада (3 Не) высоко возбужденных состояний ядра 6 Li. По энергиям и углам вылета 3 Не и n было проведено восстановление энергии первичных нейтронов, вызвавших реакцию, а также определены энергия и угол вылета недетектируемой частицы (t). Отобраны события при энергии первичных нейтронов 40—60 МэВ, для которых рассчитана энергия возбуждения E_x ядра 6 Li, распадающегося по каналу 3 Не + t.

В результате эксперимента получен спектр энергии возбуждения 6 Li в диапазоне $E_x=16-50$ МэВ. При энергии возбуждения $E_x=16.6$ МэВ обнаружен резонанс с $\Gamma=0.7$ МэВ, а в интервале $E_x=30-50$ МэВ обнаружены два широких резонанса $E_x=35.9$ и $E_x=43.1$ МэВ с $\Gamma=8.4$ и $\Gamma=5.4$ МэВ. Все уровни наблюдаются впервые.

Необходимо проведение дополнительных измерений как для более точных утверждений о структуре высоко возбужденных состояний 6 Li, так и для определения свойств уровней.

ФИНАНСИРОВАНИЕ РАБОТЫ

Исследование выполнено в рамках научной программы Национального центра физики и ма-

тематики, направление № 6 "Ядерная и радиационная физика".

СПИСОК ЛИТЕРАТУРЫ

- 1. S. Nakayama, T. Yamagata, H. Akimune, I. Daito, H. Fujimura, Y. Fujita, M. Fujiwara, K. Fushimi, M. B. Greenfield, H. Kohri, N. Koori, K. Takahisa, A. Tamii, M. Tanaka, and H. Toyokawa, Phys. Rev. Lett. 87, 122502 (2001).
- M. Freer, J. C. Angélique, L. Axelsson, B. Benoit, U. Bergmann, W. N. Catford, S. P. G. Chappell, N. M. Clarke, N. Curtis, A. D'Arrigo, E. de Goes Brennard, O. Dorvaux, B. R. Fulton, G. Giardina, C. Gregori, S. Grévy, et al., Phys. Rev. Lett. 82, 1383 (1999).
- M. V. Zhukov, B. V. Danilin, D. V. Fedorov, J. M. Bang, I. J. Thompson, and J. S. Vaagen, Phys. Rep. 231, 151 (1993).
- Yu. Ts. Oganessian, V. I. Zagrebaev, and J. S. Vaagen, Phys. Rev. C 60, 044605 (1999).
- G. Belovitsky, E. Konobeevski, A. Stepanov, V. Zavarzina, S. Zuyev, S. Lukyanov, and Yu. Sobolev, Int. J. Mod. Phys. E 17, 2331 (2008).
- D. R. Thompson and Y. C. Tang, Nucl. Phys. A 106, 591 (1968).
- S. B. Sakuta, B. G. Novatsky, D. N. Stepanov, D. V. Aleksandrov, Yu. A. Glukhov, and E. Yu. Nikolsky, Phys. At. Nucl. 65, 1771 (2002).
- 8. S. Nakayama, T. Yamagata, H. Akimune, M. Fujiwara, K. Fushimi, M. B. Greenfield, K. Hara, K. Y. Hara, H. Hashimoto, K. Ichihara, K. Kawase, H. Matsui, K. Nakanishi, M. Sakama, M. Tanaka, and M. Yosoi, Phys. Rev. C **69**, 041304 (2004).
- 9. R. Kuramoto, R. Lichtenthäler, A. Lépine-Szily, V. Guimaräes, G. F. Lima, E. Benjamim, and P. N. de Faria, Braz. J. Phys. A **34**, 933 (2004).
- O. Povoroznyk, O. K. Gorpinich, O. O. Jachmenjov, H. V. Mokhnach, O. Ponkratenko, G. Mandaglio, F. Curciarello, V. De Leo, G. Fazio, and G. Giardina, J. Phys. Soc. Jpn. 80, 094204 (2011).
- 11. М. В. Мордовской, А. А. Каспаров, А. А. Афонин, Ю. М. Бурмистров, В. П. Заварзина, В. В. Мицук, С. И. Поташев, И. В. Суркова, Тр. 73-й Международной конференции по ядерной физике "ЯДРО-2023: фундаментальные вопросы и приложения", Саров, 2023, с. 126.
- 12. С. В. Зуев, А. А. Каспаров, Е. С. Конобеевский, Изв. РАН. Сер. физ. **81**, 753 (2017) [Bull. Russ. Acad. Sci.: Phys. **81**, 679 (2017)].
- 13. М. В. Мордовской, И. В. Суркова, Изв. РАН. Сер. физ. **86**, 583 (2022) [Bull. Russ. Acad. Sci.: Phys. **86**, 484 (2022)].

DETERMINATION OF EXCITATION ENERGY SPECTRUM OF ⁶Li IN THE *n* + ⁶Li REACTION

© 2025 M. V. Mordovskoy¹⁾, A. A. Kasparov¹⁾, A. A. Afonin¹⁾, A. I. Drachev¹⁾, Yu. M. Burmistrov¹⁾, V. V. Mitsuk¹⁾, V. N. Ponomarev¹⁾, S. I. Potashev^{1),2)}

¹⁾ Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia ²⁾ P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia

An experiment on the study of the ${}^{3}\text{He} + t$ cluster structure of the ${}^{6}\text{Li}$ nucleus in the reaction ${}^{6}\text{Li}(n; {}^{3}\text{He}\,n)t$ was carried out on the RADEX neutron channel of the INR RAS at a neutron energy of 40–60 MeV. The excitation energy spectrum of ${}^{6}\text{Li}$ was obtained in the range $E_x = 16-50$ MeV. At the excitation energy $E_x = 16.6$ MeV a resonance with $\Gamma = 0.7$ MeV was detected, and in the range $E_x = 30-50$ MeV two broad resonances $E_x = 35.9$ MeV with $\Gamma = 8.4$ MeV and $E_x = 43.1$ MeV with $\Gamma = 5.4$ MeV were detected. All levels are observed for the first time.