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В работе в рамках метода хаотической фазы исследованы свойства четно-четных ядер вблизи “удален-
ного” дважды магического нейтронно-избыточного ядра 78Ni. Вычислены энергии уровней и вероят-
ности электромагнитных переходов в  рассмотренных ядрах. Проведено сравнение с  имеющимися 
в настоящее время немногочисленными экспериментальными данными. 
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К настоящему времени из эксперимента получе-
на, хотя и довольно скудная, информация о свой-
ствах ряда ядер в окрестности предельно нейтрон-
но-избыточного дважды магического ядра 78Ni. 
Ранее в  наших работах мы рассматривали ядра 
с четными А типа “магическое ядро 2 p± , 2n± , ± ± ,p n

p n±  ” в области вблизи дважды магического ней-
тронно-избыточного ядра 132Sn [1–5] и  вблизи 
дважды магического нейтронно-дефицитного ядра 
100Sn [6, 7]. Здесь, как и ранее, расчеты проводятся 
в  приближении метода хаотической фазы (RPA) 
без учета сверхтекучести, которая исчезает в  рас-
сматриваемых нами случаях.1

В случае четно-четных ядер спектр уровней 
ядер типа “магическое ±2 p” либо “магическое ±2n” 
в рамках приближения хаотической фазы опреде-
ляется решением системы уравнений 

	 = .
A B X X

B C Y Y

   
ω      − 

	 (1)

Здесь A = A12,34, ′ ′ ′ ′= =12,3 ,4 3 4 ,12B B B , ′ ′ ′ ′= 1 2 ,3 4 ,C C  
где индексы без штриха относятся к  одночастич-
ным состояниям выше поверхности Ферми, а ин-
дексы со  штрихом  — к  состояниям ниже поверх-
ности Ферми. Входящие в формулу (1) матричные 
элементы имеют вид 

	 , = ( ) ,
a

A j j J j j Jαβ µν αµ βν α β α α β µ νδ δ ε + ε + ϑ

	 , = ,a a
B j j J j j Jαβ µν α β µ νϑ 	 (2)

 , = ( ) .a aC j j J j j Jαβ µν αµ βν α β α β µ ν− δ δ ε + ε + ϑ
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Здесь = ( ) ( ) ( )n n j jαβ α β α β α βδ δ ⋅ δ ⋅ δ  , в то время 

как a a
j j J j j Jα β µ νϑ   — антисимметризованные 

матричные элементы используемого взаимодей-
ствия в канале частица–частица.

“Верхние” решения +ω  системы (1) определяют 
спектр ядра “магическое + 2 нуклона”, а “нижние” 

−ω  — спектр уровней ядра “магическое — 2 нукло-
на”. Энергии уровней, отсчитываемых от экспери-
ментальных значений полной энергии соответству-
ющих ядер, определяются соотношениями 

( 2) = ( 2) ( )J JE A B A B A+
ν ν

+ ω + + −  

	 и ( 2) = ( 2) ( ),J JE A B A B A−
ν ν

− − ω + − − 	 (3)

где B — экспериментальные значения энергии свя-
зи магического и рассматриваемого ядер.

Входящие в  систему уравнений (1) амплитуды 
X  и Y  имеют вид: 

1/2
12 12 1 2( ) =(1 ) ; 0 ,

JMJX JM a a+ − + + +
ν ν  ω + δ ω  



+ − + + +
ν ν′ ′ ′ ′ ′ ′ ω + δ ω  

1/2
1 2 1 2 1 2( ) =(1 ) ; 0 ,

JMJY JM a a 

[ ]− − −
µ µω + δ ω1/2

12 12 1 2( ) =(1 ) ; 0 ,
JMJX JM a a 

	 [ ]1/2
1 2 1 2 1 2( ) =(1 ) ; 0 ,

JM
Y JM a a− − −

µ µ′ ′ ′ ′ ′ ′ω + δ ω  	 (4)

где | 0〉   — вектор основного состояния остовного 
ядра ( )A  c учетом корреляции в основном состоя-
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нии, в то время как | ;JM+−ω 〉 — амплитуды состо-
яний ядер с ( 2, 2)A A+ −  нуклонами. В  формулах 
(4) мы имеем 

	 + + + +
α β α α β β α α β β

α β

= ∑[ ] ,JM JM
J m j m j m j m

m m

a a C a a 	 (5)

α β

− + −α α β β
− −α α β β α α β β

α β

=

= −∑
[ ]

( 1) .

JM

j m j mJM
j m j m j m j m

m m

a a

C a a

Амплитуды нормированы соотношением 

    µ ≥ ν µ′ ′ ′ ′
≥ ≥′ ′

ν µ

ω ω − ω ω =

= δ ω ω

∑ ∑12 12 1 2 1 2
1 2 1 2

( ) ( ) ( ) ( )

( ).

J J J J
nX u X Y Y

	 (6)

Для ядра ( 2)A +  амплитуды X  большие, а  ам-
плитуды Y  маленькие, в  то время как для ядра 
( 2)A −  наоборот.

В расчетах одночастичного потенциала мы ис-
пользовали потенциал вида [8], учитывающий изо-
топическую зависимость не только центрального, 
но и спин-орбитального члена 

	
0

1
( , ) ( ) ,

1
( ) ,

1 exp[( ) ]

s
df

U U f r U s
r dr

f r
r R a

= ⋅ +

=
+ −



r σ
	 (7)

−= − β τ

− = α ⋅ − β τ =  

0 0 3

1/3
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(1 ),

1 , .s s

N Z
U V

A
N Z

U V R r A
A 

Для протонов к  (7) добавлялся кулоновский 
потенциал равномерно заряженной сферы радиуса 

1/3=c cR r A . В  случае ядер вблизи 78Ni входящие 
в  (7) параметры оказываются следующими: 

0 = 52V − МэВ, = 0.39α − , ( ) = 0.73a p Фм, ( ) = 0.72a n
Фм, = 1.39β , = 0.6sβ −



, 0 = 1.27r Фм, = 1.25cr  Фм. 
Здесь 3 = 1τ −  для протонов и  3 = 1τ +  для нейтро-
нов.

В табл. 1 и  2 приведены экспериментальные 
и  расчетные значения энергий одночастичных 
состояний для нейтронов и протонов в окрестно-
сти 78Ni. Отметим, что соответствующие экспе-
риментальные данные весьма немногочисленны 
и  определены с  большими ошибками вследствие 
существенных погрешностей в  определении масс 
критических ядер. В  расчетах мы использовали 
экспериментальные значения одночастичных 
энергий, где они известны, и расчетные значения 
энергий, вычисленные с  использованием потен-
циала (7), для остальных состояний.

Используемое нами эффективное двухчастич-
ное взаимодействие имеет вид [2–7] 

2
12

1 2 12 1 22
00

1 2 12
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T

T

r
V V V S

r

V V V s

σ

τ τσ τ

 
ϑ = + + + ×  

 

× + + +

σ σ τ τ

σ σ

	
2

3 3

12

1 (1) 1 (2)
.

2 2
e
r

− τ − τ   +       
	 (8)

В расчетах мы использовали следующие пара-
метры взаимодействия: = 16.65V − , = 2.23Vσ , 

= 3.00TV − , = 3.35Vτ , = 4.33Vτσ , = 3.00TVτ  (МэВ) 
и  00 = 1.75r  Фм.

Приведенный матричный элемент электромаг-
нитного перехода мультипольности λ между уров-
нями в ядрах “магическое ядро + 2 нуклона одного 
сорта”  имеет вид 

[ ]1/2
; ( ) ; (2 1)(2 1)J M J J J+ +

ν µω λ ω = + + ×′ ′

+ +′
µ ν

≥ ≥

+ + +
λ

 ω ω× δ λ ×′ + δ + δ

× + − δ λ ×′

∑ 12 34
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3 1 14 3 4 2

( ) ( )
( ; )
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λ′ ′ ′ ′ ′ ′ ′

× δ λ +′

+ − δ λ +′

2 4 3 4 1 3 1

11 2
1 4 3 4 2 3 2

( ; )

( 1) ( ; )j j J

W j Jj j J j m j

W j Jj j J j m j

13 4
2 3 4 3 1 4 1( 1) ( ; )

j j J
W j Jj j J j m j

+ + +′′ ′
λ′ ′ ′ ′ ′ ′ ′+ − δ λ +′

	

1 2 3 4
1 3 4 3 2

4 2

( 1) ( ; )

.

j j j j J J
W j Jj j J

j m j

+ + + + + ′′ ′ ′ ′
′ ′ ′ ′ ′

λ′ ′

+ − δ λ ×′

× 
	 (9)

В формуле (9) ( , )m m E Mλ ≡ λ λ  есть одночастич-
ный матричный элемент ( )E M -перехода мульти-
польности λ. В  случае ядра типа “магическое яд-
ро  — 2 нуклона одного сорта”  следует в  системе 
уравнений (1) взять “нижние”  решения системы 
(1) и умножить правую часть формулы (9) на вели-
чину ( 1)λ− .

В случае 2E -перехода ( = 2)λ  и  1M -перехода 
( = 1)λ  мы использовали операторы переходов вида 
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	 , 2
2=2( 2 ) = (eff ) ( , ),p nm E e r Y

∧
µλµ ϑ ϕ 	 (10)

	

∧

µ

µ = µ ×
π

 × + + τ ⊗ 
, , 1

2 3 2

3
( 1 )

4

(eff ) (eff ) [ ] .

N

p n p n
s

m M

g g g Ys s l

Входящие в  формулу (10) значения эффектив-
ных параметров для 1M -переходов были те же, что 
и  в наших предыдущих работах, а  именно: 

(eff ) = 1.102pg


, (eff ) = 0.05ng −


, (eff ) = 3.79p
sg , 

(eff ) = 2.04n
sg −  и  2 = 0.031g −  Фм–2.

Результаты расчетов спектров и  приведенных 
вероятностей 2E - и  1M -переходов приведены 
в табл. 3–6, где фигурируют только уровни поло-
жительной четности. Уровни отрицательной чет-
ности, в силу структуры одночастичного спектра, 
расположены выше по энергии.

Расчеты для 2E -переходов приведены для зна-
чений (eff ) = 2pe  (ядра 80Zn и  76Fe) и  (eff ) = 1ne  
(ядра 80Ni и 76Ni). Использованное нами значение 
эффективного заряда протона воспроизводит экс-
периментальные данные по  вероятностям 2E - 
переходов в ядре 80Zn, определенных с существен-
ными погрешностями, см. табл. 3. Оно близко 
к таковому (eff ) 1.6,pe ≈  определенному нами ранее 
в ядрах вблизи 208Pb, 132Sn и в ядре 98Cd [7]. В то же 
время значение (eff ) = 1ne  воспроизводит экспери-
ментальную величину 1 1( 2;8 6 )B E + +→  в  ядре 76Ni, 
см. табл. 6, и оно близко к значению (eff ) 0.9,ne ≈  
полученному нами ранее для ядер дважды магиче-
ских областей вблизи 208Pb и 132Sn. Однако в нашей 
работе [6] в расчетах, проведенных в методах RPA 
и  QRPA, для ядра 102Sn было получено значение 

(eff ) 2.7ne ≈ , воспроизводящее эксперименталь-
ную величину 1 1( 2;6 4 ) = 3B E + +→  W.u. Столь 
большое различие в величине (eff )ne  нашло объяс-
нение в работе [14], где для ядра 102Sn была отмече-

Таблица 1. Одночастичные уровни протонов в ядре 78Ni (значения энергий ближайших к поверхности Ферми 
уровней ε(exp) определены из экспериментальных значений энергий связи ядер 79Cu, 77Co и 78Ni [9], а энергии 
более удаленных состояний — из экспериментальных спектров уровней ядер 79Cu, 77Co [10]; расчетные значе-
ния энергий одночастичных состояний, соответствующие потенциалу типа Вудса–Саксона, ε(W-S), выполне-
ны с использованием потенциала (7); энергии одночастичных состояний ε(G) заимствованы из самосогласо-
ванных расчетов [11], соответствующих взаимодействию типа Gogny [12, 13], в то время как величины ε(S3) 
соответствуют нашим расчетам по методу Хартри–Фока с взаимодействием Skyrme 3) 

n j  ε(exp) ε  (W-S) ε  (G) ε  (S3) 

11/21h  –0.027 1.584

3/22d  –2.731 0.049

1/23s  –3.363 1.173

7/21g  –3.765 –1.336

5/22d  –5.323 –1.673

9/21g  –9.726 –9.680

1/22 p  −13.3  –13.243 –12.2 –12.463

3/22 p  −14.1  –14.766 –13.8 –14.031

5/21 f  −14.8(0.4) –14.961 –14.3 –14.500

7/21 f  −20.2(0.7) –19.054 –21.4 –20.551 

1/22s  –24.370 –25.743 

3/21d  –25.413 –27.524 

5/21d  –27.835 –30.952 

1/21p  –34.777 –39.556 

3/21p  –35.884 –40.841 

1/21s  –42.949 –49.745 
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Таблица 2. Одночастичные уровни нейтронов в ядре 78Ni (значения ближайших к поверхности Ферми уровней 
ε(exp) определены из экспериментальных значений энергий связи ядер 79Ni, 77Ni и  78Ni [9], а энергии более 
удаленных состояний — из экспериментальных спектров уровней ядер 79Ni и 77Ni [10]) 

n j  ε(exp) ε  (W-S) ε  (G) ε  (S 3) 

11/21h  3.050 3.885 

7/21g  2.184 3.5 2.301 

3/22d  +0.7  0.364 1.5 0.642 

1/23s  −0.1  –1.050 0.9 -0.253 

5/22d  –1.3 (0.6) –1.826 –0.8 –1.039 

9/21g  –5.6 (0.5) –4.893 –5.6 –6.294 

1/22 p  –7.345 –9.4 –8.887 

5/21 f  –7.582 –10.5 –10.366 

3/22 p  –9.147 –10.703 

7/21 f  –12.784 –16.640 

1/22s  –17.217 –21.581 

3/21d  –17.234 –23.442 

5/21d  –20.367 –26.885 

1/21p  –26.057 –35.420 

3/22 p  –27.486 –36.685 

1/21s  –33.949 –45.385 

Таблица 3. Спектр нижних уровней и приведенные вероятности 2E  и  1M -переходов в ядре 80Zn (вероятности 
2E -переходов приведены в  единицах 2e Фм4 при использовании величины эффективного заряда протона 
(eff ) = 2pe e ; вероятности 1M -переходов приведены в единицах µ2

N )

πJ  Ерасч. Еэксп. Переход π π→i fJ J  *( 2, 1 )B E M расч. 
( 2)B E эксп. 

+
10  осн. сост. осн. сост. + +→1 12 0  131.8 144 (30) 

+
12  1.931 1.497 + +→2 12 0  18.5 

+
14  2.313 1.979 + +→1 14 2  91.9 162 (100) 

+
20  2.566 + +→2 10 2  4.8 

+
24  2.799 + +→2 12 2  86.1 

+
22  2.922 + +→1 21 2  87.4 ( *1.11 ) 

+
11  3.207 + +→1 23 2  25.0 ( *0.13 ) 

+
13  3.232 + +→2 14 4  31.0 

+
32  3.398 + +→2 22 0  57.0 
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на большая роль примеси высоколежащих состоя-
ний с изоспином = 2T , которые в ядре 102Sn лежат 
в области дискретного спектра, ввиду большой за-
глубленности одночастичных состояний нейтрона 
в этом ядре. Эти состояния не учитываются в рас-
чете [6]. Соответствующие изоаналоговые примеси 
в ядре 76Ni лежат в области непрерывного спектра 
и  не дают вклад в  эффективный заряд нейтрона. 
Следует однако заметить, что для более однознач-
ных результатов расчетов вблизи ядер 78Ni и  100Sn 
в вычислениях следует использовать эксперимен-

тальные данные по  значениям одночастичных 
знергий и  структуре спектров, которые в  настоя-
щее время известны только частично.
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Таблица 4. Спектр нижних уровней и вероятности 2E -переходов в ядре 76Fe (приведенные вероятности пере-
ходов указаны в единицах 2e  Фм4 при использовании эффективного заряда протона (eff ) = 2pe e ) 

π
iJ  Ерасч. Еэксп. Переход π π→i fJ J  расч.( 2)B E эксп.( 2)B E  

+
10  осн. сост. осн. сост. + +→1 12 0  110.9 

+
12  2.113 + +→1 14 2  106.0 

+
14  2.531 + +→1 16 4  48.3 

+
16  2.670 

Таблица 5. Спектр нижних уровней и приведенные вероятности 2E  и  1M -переходов в ядре 80Ni (вероятности 
2E -переходов приведены в единицах 2e Фм4 при использовании эффективного заряда нейтрона (eff ) =ne e ; 

вероятности 1M -переходов (указаны в скобках) приведены в единицах µ2
N ) 

πJ  Eрасч. Eэксп. Переход π π→i fJ J  *( 2, 1 )B E M расч. 
( 2)B E эксп. 

+
10  осн. сост. осн. сост. + +→1 12 0  203.7 

+
12  1.270 + +→1 14 2  146.2 

+
14  1.640 + +→2 12 2  336.4 ( *0.04 ) 

+
22  2.443 + +→1 13 2  9.9 ( *0.01 ) 

+
13  3.088 + +→1 23 2  43.6 ( *0.11 ) 

+
20  3.269 + +→1 13 4  145.6 ( *0 )

Таблица 6. Спектр нижних уровней и приведенные вероятности 2E -переходов в ядре 76Ni (вероятности пере-
ходов приведены в единицах 2e Фм4 при использовании эффективного заряда нейтрона (eff ) =ne e ) 

π
iJ  Eрасч. Eэксп. Переход π π→i fJ J  ( 2)B E расч. ( 2)B E эксп. 

+
10  осн. сост. осн. сост. + +→1 12 0  50.5 

+
12  1.684 0.990 + +→1 14 2  59.3 

+
14  2.121 1.920 + +→1 16 4  41.3 

+
16  2.266 2.276 + +→1 18 6  16.6 19.3 (2.7) 

+
18  2.316 2.418 
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PROPERTIES OF THE “REMOTE”  
EVEN–EVEN NUCLEI CLOSE TO 78Ni
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1)NRC “Kurchatov Institute”  — PNPI, Gatchina, Russia 
In this paper, in the framework of the random phase approximation, we investigate the properties of even–even 
nuclei in the vicinity of the “remote” doubly-magic nucleus 78Ni. The energies of the levels and probabilities of 
electromagnetic transitions in the considered nuclei have been calculated. A comparison of the obtained results 
with the currently available few experimental data has been carried out.


