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В модели Кирально-Инвариантного Фазового Объема конституентные кварки адронов окруже-
ны непертурбативным вакуумом с температурой кипения Tc. Цветоэлектрическая энергия связи ECE 
пропорциональна приведенной энергии кварков εij. Спиновые произведения цветомагнитного расще-
пления ECM рассчитываются в  соответствии с  упрощенными правилами парастатистики. Массы 61 
адрона описаны восемью параметрами, включая Tc и пять масс кварков. Предсказаны массы 21 адрона, 
включая адроны с двумя и тремя тяжелыми кварками.
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1. ВВЕДЕНИЕ1

Модель Кирально-Инвариантного Фазового 
Объема CHIPS (Chiral-Invariant Phase Space) для 
расчета спектра масс адронов из  легких кварков 
была предложена в  [1]. Главной целью работы [1] 
было продемонстрировать, что значение темпера-
туры кипения вакуума Tc [2], которое было полу-
чено в динамической CHIPS-модели [3–7], может 
описывать и массы легких 1s-адронов. Непертурба-
тивная CHIPS-модель структурных функций [8, 9] 
включает и тяжелые кварки [8], поэтому обобщен-
ная на  тяжелые кварки массовая формула CHIPS 
должна описать массы всех 1s-адронов. Массы 
1s-адронов без учета цветоэлектрической энергии 
связи и цветомагнитного расщепления могут быть 
рассчитаны для любых масс кварков с  помощью 
формулы (1), выведенной в [1]. Необходимо было 
обобщить расчет цветоэлектрических и цветомаг-
нитных поправок к массам адронов [1] на тяжелые 
кварки. Явление конфайнмента адронов не  объ-
яснялось ни  в пионерской работе Боголюбова 
[10] для кварков, удерживаемых в  s-состоянии, 
ни  в MIT-модели мешков [11] для кварков, удер-
живаемых давлением непертурбативного вакуума. 
Так же без объяснений явление конфайнмента 
постулируется и в CHIPS-модели. Модель CHIPS 
не использует ни потенциальную яму [10], ни дав-
ление непертурбативного вакуума [11], а  вместо 
этого постулируется термостат непертурбативного 
вакуума для внутреннего пертурбативного вакуума 
1)	 Всероссийский научно-исследовательский институт ав-
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удерживаемых кварков, предполагая, что тяжелые 
кварки 1s-адронов занимают асимптотически 
свободную [12, 13] центральную область, а легкие 
кварки могут глубоко проникать в  окружающий 
непертурбативный вакуум, который экранирует 
цветовой заряд легких кварков [14]. Базовая масса 
M, не  включающая цветоэлектрические и  цвето-
магнитные поправки, для n кварков с  массами mi 
при температуре Tc рассчитывается по  формуле, 
выведенной в [1]:

	 ( )( )
= = <
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1 1
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 K0 и  K1  — функции Макдо-

нальда. Для легких mi ≈ 0 кварков ( )= −2 1 .cM T n n

Цветоэлектрические и  цветомагнитные по-
правки к адронным массам определяются бегущей 
константой связи сильного взаимодействия αs(m). 
Непертурбативную CHIPS-модель можно развить 
только для простой аппроксимации величины 
αs(m), справедливой для любой массы m. Как в слу-
чае структурных функций [8] при росте Q2, так и с 
ростом m2 [9] все больше ароматов кварков дают 
свой вклад в  величину αs(m). Это можно учесть 
степенью падения меньшей единицы в  формуле 
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сти при малых m, можно заменить m2 на 

( ) + Λ Λ > Λ2 2 2 2
0 0 QCDm . Соответствующая функция

	 ( )α =
  +
     

0.843
2 2

2

0.918

0.374
ln

0.3

s m
m

,	 (2)

где величины m и Λ в ГэВ, сравнивается на рис. 1 
с величинами αs(m) из таблиц PDG [15]. Согласно 
этой формуле (2) для Z-бозона αs(91.188) = 0.118 
и αs(0) = 1.83.

Для кварковых пар цветоэлектрическая энергия 

связи пропорциональна ( )  α µ2 ,s ij  где µ =
+
i j

ij
i j

m m

m m
 — 

приведенная масса кварков с массами mi и mj. В мо-
дели CHIPS [1] цветоэлектрическое взаимодей-
ствие легких кварков (q = u, d) считается полностью 
экранированным непертурбативным вакуумом: 

=CE 0qQE  (Q = u, d, s, c, b). Если оба кварка тяжелее 

u- и  d-кварков, цветоэлектрическая массовая по-
правка для мезонов записывается в виде

	 ( ) ( )= ⋅ µ ⋅ α µ ⋅ ε2
CECE

ij
ij s ij ijE A f ,	 (3)

где  
⋅

ε =
+

i j
ij

i j

E E

E E
  — релятивистская приведенная 

энергия [16], а f(µij) — коэффициент экранировки, 
который обращается в нуль при µij = 0 и в единицу 
при m >> Tc. Если измерять приведенную массу 
в единицах Tc,  тогда функция f(µ) может быть запи-
сана в виде:

	 ( ) µ µ =  + µ 

5

.
c

f
T

	 (4)

Степень 5 является, фактически, скрытым па-
раметром модели. Оказалось, что безразмерный 
варьируемый параметр ACE = 5.13  также близок 
к 5. Следуя работе [1], средние энергии кварков Ei 
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Рис. 1. Сравнение аппроксимирующей функции (2) c αs(m) данными PDG [15].
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в  адроне с  массой M можно найти, предполагая, 
что кварки имеют равные кинетические энергии: 
для мезонов 

+ −
= 1 2

1 2
M m m

E  и   + −
= 2 1

2 ,
2

M m m
E  

а для барионов 

+ − −
= 1 2 3

1
2

,�
3

M m m m
E  

+ − −
= 2 1 3

2
2

3
M m m m

E  

и 
+ − −

= 3 1 2
3

2
3

M m m m
E .

Для барионов полная энергия связи рассчиты-
вается как

	 ( )= + + CECE CE CE
1

,
2

ijk ij jk ikE E E E 	 (5)

где CE
ijE  определяется формулой (3), и сумма энер-

гий связи кварковых пар бариона делится на  2, 

поскольку для мезонов ( )λ + λ =
2

0i j  и   λ λ = −λ2, ,i j  

а для барионов ( )λ + λ + λ =
2

0i j k  и   λλ λ = −
2

, .
2i j

Следуя работе [1] для qQ кварковых пар непер-
турбативное цветомагнитное расщепление мезо-
нов рассчитывается как

	
⋅

=
⋅

3

CM ,c ijij

i j

T a
E

E E
	 (6)

где aij = <  ,i js s > — величины усредненных спиновых 
произведений [1]. Для тяжелых ss, sh и hh (h = c, b) 
кварковых пар сила цветомагнитного взаимодей-
ствия на  малых расстояниях пропорциональна 
эволюционному радиусу тяжелой кварковой пары 
[17], который обратно пропорционален квадрату 
εij. Таким образом, для тяжелых кварковых пар 
в мезонах цветомагнитное расщепление масс рас-
считывается по формуле
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⋅ ⋅
= ⋅

+
CMCM 2

.ij i jij
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a E E
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E E
	 (7)

Величина варьируемого параметра BCM =  
= 124 МэВ оказалась близкой к половине Tc.

Для барионов

	
+ +

= CMCM CM
CM

32
,

ij jk ik
ijk E E E

E
v

	 (8)

где = 3
32

3
2

v   — коэффициент “отношения объемов 

адронов” [1]. Необходимо подчеркнуть, что цвето-

электрические и цветомагнитные поправки не яв-
ляются основной целью статьи, поэтому они под-
гонялись всего двумя свободными параметрами 
ACE и BCM, хотя Tc в  формулах (4) и  (6), а  также 5 
в формуле (4) могут рассматриваться как дополни-
тельные скрытые параметры.

Коэффициенты цветомагнитного расщепления 
aij приводятся в нормировке работы [1]. Для мезо-

нов с  = 0S  ( ) = −0
12 4a , а для мезонов с S = 1 ( )  =1

12
4

.
3

a  

Для барионов с  ( ) = =3/23 2
.

2 3ijS a   Для барионов с 

 = 1
2

S  можно использовать правило сумм 
( )  

>

= −∑ 1/2
2,ij

i j

a  но для конкретной ( )1/2
ija  величины 

нужно использовать правила статистики. Наибо-
лее известной неопределенностью является нео-
пределенность для барионов, состоящих из трех 
кварков разных ароматов и имеющих I = 0, напри-
мер, для Λ-барионов. В работе [1] для Λ использо-
вались правила традиционной статистики 
Гелл-Мана [18], поэтому для всех трех спиновых 

произведений ( ) = −1/2 2
.

3ija  Более общая аппрокси-
мация доказала, что это статистическое решение 
не способно описать разность масс Σ0 и Λ.

Задолго до  работы Гелл-Мана [18] “цветовая” 
статистика была рассмотрена в  рамках обобщен-
ной теории поля Грина [19], в  которой спиновая 
статистика кварков бариона была предсказана 
в рамках парадигмы парастатистики третьего ран-
га. Правила Грина можно было применять в разной 
калибровке, и почти сразу после работы Гелл-Ма-
на, а возможно, и параллельно с ней, Гринберг [20] 
предложил калибровку, в которой “цвет”, подобно 
электрическому заряду, и спин в теории поля Гри-
на независимы, как и в решении Гелл-Мана. Тем 
не менее, позже Бракен и Грин рассмотрели другую 
возможную калибровку парастатистики [21], кото-
рая могла значительно изменить значения усред-
ненных спиновых произведений aij. Грубо говоря, 
в  предложенной калибровке предполагалось, что 
если кварки уже антисимметризованы по  цвету, 
то они симметризуются по спину. Это значит, что 
внутри барионного конфайнмента цветные квар-
ки могут вести себя как белые бозоны. Согласно 
упрощенному правилу парастатистики, использу-
емому в предлагаемой CHIPS-аппроксимации, все 
кварки одного аромата стремятся к  одинаковой 

ориентации спинов ↑↑ = 2
,

3
a  а, развернувшись 

в  разные стороны, они будут иметь ↑↓ = − 4
3

a  [1]. 
Сложностью для упрощенной парастатистики 
является то, что имеется три цвета, а  не два со-
стояния, как в случае спинов и изоспинов. Бари-
оны из  трех кварков различных ароматов могут 
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находиться в  изосинглетном состоянии (напри-
мер, Λ) только в  виде суперпозиции состояний 
с  противоположными спинами легких кварков  
(u↑  d↓) и (u↓  d↑), поскольку состояния с параллель-
ными спинами одинаковых легких кварков соот-
ветствуют изовекторному состоянию (например, Σ) 
со спиновыми конфигурациями триплета: (u ↑ u ↑),  
(u ↑ d ↑) и (d ↑ d ↑). Аналогичное правило для “двух 
легчайших кварков” применялось в  CHIPS-ап-
проксимации даже для Ωbc-бариона и  для других 
тяжелых Ω- и Ξ-барионов, составленных из квар-
ков трех различных ароматов, но  полученные 
значения масс для этих барионов доказывают, что 
это простое решение неидеально. Таким образом, 
изотриплетный Σ0-барион имел упрощенную спи-
новую структуру (s ↓ d ↑ u ↑), а  в изосинглетном 
Λ-барионе смешивались две спиновые структуры 
(s ↑ d ↑ u ↓) и (s ↑ d ↓ u ↑). При смешивании 

   = = − = −  
2 4 4

, ,
3 3 3sd su dua a a  

и

      = − = = −  
4 2 4

, ,
3 3 3sd su dua a a  

получается

    = − = − = −  
1 1 4

, , .
3 3 3sd su dua a a  

Аналогичные спиновые произведения были 
использованы для Λc-, Ξc-, Λb-, Ξb-, Ξbc- и  Ωbc-ба-

рионов. В  табл. 1 для S =    1
2

барионов приведены 
коэффициенты 3 · aij, найденные в  соответствии 
с упрощенными правилами парастатистики.

Окончательная массовая формула для 1s-мезо-
нов имеет вид

	 = − +12 12
CE CM,hm M E E 	 (9)

где базовая масса M определена формулой (1), 

CE
ijE    — формулой (3), и  CM

ijE    — формулами (6) 
и (7). От изотопического спина рассчитанная мас-
са мезона не зависит и определяется лишь массами 
кварков. Для 1s-барионов

	 ( )= − + + +12 23 13 123
CE CE CE CM

1
,

2hm M E E E E 	 (10)

где 123
CME  определена формулой (8). Для кварковых 

пар с легкими кварками цветоэлектрическая энер-
гия связи ECE = 0, а для тяжелых кварковых пар ве-
личины ECE определяются формулой (3). Цвето-
магнитные массовые поправки ECM для легких 
кварков рассчитываются по формуле (6), а для тя-
желых — по формуле (7).

2. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ 
АППРОКСИМАЦИИ МАСС АДРОНОВ

В работе [1] цветоэлектрические энергии связи 
адронов, составленных из  легких кварков, счита-
лись пренебрежимо малыми, а  цветомагнитные 

Таблица 1. Спиновые произведения ( )⋅ 1/23 ija  для барионов со спином = 1
2

S

H qq qs ss qc sc cc qb sb cb bb H qq qs ss qc sc cc qb sb cb bb

N –2 0 0 0 0 0 0 0 0 0 Ξ′b 0 2 0 0 0 0 –4 –4 0 0

Λ –4 –1 0 0 0 0 0 0 0 0 Ωb 0 0 2 0 0 0 0 –4 0 0

Σ 2 –4 0 0 0 0 0 0 0 0 Ξcc 0 0 0 –4 0 2 0 0 0 0

Ξ 0 –4 2 0 0 0 0 0 0 0 Ωcc 0 0 0 0 –4 2 0 0 0 0

Λc –4 0 0 –1 0 0 0 0 0 0 Ξbc 0 0 0 –4 0 0 –1 0 –1 0

Σc 2 0 0 –4 0 0 0 0 0 0 Ξ′bс 0 0 0 2 0 0 –4 0 –4 0

Ξc 0 –4 0 –1 –1 0 0 0 0 0 Ωbc 0 0 0 0 –4 0 0 –1 –1 0

Ξ′с 0 2 0 –4 –4 0 0 0 0 0 Ω′bc
0 0 0 0 2 0 0 –4 –4 0

Ωc 0 0 2 0 –4 0 0 0 0 0 Ωbcc 0 0 0 0 0 2 0 0 –4 0

Λb –4 0 0 0 0 0 –1 0 0 0 Ξbb 0 0 0 0 0 0 –4 0 0 2

Ξb 0 –4 0 0 0 0 –1 –1 0 0 Ωbb 0 0 0 0 0 0 0 –4 0 2

Σb 2 0 0 0 0 0 –4 0 0 0 Ωbbc 0 0 0 0 0 0 0 0 –4 2
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расщепления можно было сократить, так что для 
легких мезонов 

 π ω+ ⋅
= =2

3
4q

m m
m  621.5 МэВ

  
 

= =  
2 219.7МэВ

2 2
q

c

m
T , 

а для легких барионов 

Δ+
= =3 2

N
q

m m
m  1085.5 МэВ

 3 221.5 МэВ .
2 6

q
c

m
T

 
= =  

 

Поскольку величина QCD массы пиона смеши-
вается с небольшой массой псевдоголдстоуновско-
го пиона [22], экспериментально измеренная масса 
пиона может быть значительно меньше предска-
занной CHIPS массы. По этой причине масса пио-
на была исключена из  новой аппроксимации, 
а  также вместо октетной массы 

( )8

1
,

2
m m m m′η η η π= − −  использованной в  работе 

[1], в  новой аппроксимации была использована 

величина 
π ′

ηπ
η η η= − = −

8 8
.

2 2

mm
m m m

При аппроксимации базовых масс были найде-
ны следующие шесть параметров: Tc = 220.5 МэВ,  
mu = 4.5 МэВ, md = 11 МэВ, ms = 267.5 МэВ,  
mc = 1500 МэВ, mb = 4865 МэВ

   
2

0.41, 34.5, 3.24 .d s b

u u d c

m m m
m m m m

 = = = + 
 

Для сравнения массы кварков из  PDG [15]: 
mu = 2.5 МэВ, md = 4.7 МэВ, ms = 93.4 МэВ, mc =  
= 1270 МэВ, mb = 4180 МэВ 

  
2

0.47, 27.3, 3.29d s b

u u d c

m m m
m m m m

 = = = + 
. 

Видно, что массы кварков, полученные при 
CHIPS-аппроксимации, всегда больше PDG-масс, 
хотя значения отношений масс кварков близки 
к  PDG-значениям. Результат новой CHIPS-ап-
проксимации показан на  рис.  2 сплошной гисто-
граммой по номеру адрона N и в табл. 2–4 — в ко-
лонках MCH2. В колонках Mex приводятся значения 
PDG-масс [15]. В  табл. 2 в  колонке MCH1 показан 
результат CHIPS-аппроксимации из  работы [1], 
а  в колонках Mth табл. 3–5 приведены наиболее 
близкие к  экспериментальным значениям пред-
сказания работ [23–31].

В колонках |∆| рассчитаны абсолютные значе-
ния разностей теоретических и  эксперименталь-
ных масс. В  колонках “Спины” приведена упро-

щенная спиновая структура, использованная при 
CHIPS-аппроксимации.

Как обсуждалось в работе [1], при расчете масс 
адронов модель мешков MIT [32] плохо описывает 
K*-, Σ-, ϕ- и Ξ-адроны, а недавний “ab initio” расчет 
[33] плохо описывает K*, Σ-, ∆-, Σ* и Ξ*. По сравне-
нию со  старой CHIPS-аппроксимацией [1] новая 
CHIPS-аппроксимация, за  исключением пионов, 
описывает 1s-адроны из легких u-, d- и s-кварков 
примерно также, если не  считать отклонение 
в  старой аппроксимации от  массы Σ− более, чем 
на 10 МэВ. Заметим, что для ρ/ω из-за независи-
мости модельной массы от изоспина сравнение 
производится с их средней массой, причем старая 
аппроксимация давала значение близкое к  массе 
ω, а новая аппроксимация — ближе к массе ρ. Что 
касается выбора спиновой структуры, экспери-
ментальная разность масс ΛΣ

−0 �m m  = 76.9  МэВ, 
при старой аппроксимации она равнялась 62 МэВ, 
а в новой аппроксимации равна 74.4 МэВ, что зна-
чительно лучше.

Из рис. 2 видно, что отношение энергии связи 
к базовой массе (штриховая гистограмма и правая 
ось) нигде не превышает 10%, причем для полови-
ны 1s-адронов эта поправка пренебрежимо мала. 
Результаты новой CHIPS-аппроксимации для из-
меренных масс адронов, содержащих c-кварк, 
приведены в табл. 3. В колонке Mth приведены са-
мые близкие к экспериментальным данным пред-
сказания теоретических работ [23–27, 29]. Из-за 
неопределенности упрощенной спиновой структу-
ры в  новой CHIPS-аппроксимации массы Ξc-  
и  Ξ′c-барионов аппроксимируются хуже, чем для 
других 1s-барионов. Кроме того, эксперименталь-
ная разность масс  ψ η−/ cJm m = 113 МэВ недооцене-
на при CHIPS-аппроксимации (83 МэВ), но хоро-
шее предсказание массы ++Ξcc

m  = 3621.6 МэВ [34] 
(mCH2 = 3634.6 МэВ) доказывает, что предсказания 
CHIPS могут быть лучшим целеуказанием при по-
иске барионов с двумя c-кварками, чем лучшее тео-
ретическое предсказание работы [26] 3579 МэВ. За-

метим, что для cc и  bb S = 1
2

 барионов в  CHIPS 
отсутствует неопределенность спиновой функции. 
Для разных спиновых структур Λc и Σc в  экспери-
менте разность масс + +Σ Λ

−
c c

m m  = 166.1 МэВ, 

а CHIPS дает 160.1 МэВ.
Результаты новой CHIPS-аппроксимации для 

измеренных масс адронов, содержащих b-кварк, 
приведены в табл. 4. Экспериментальная разность 
масс Υ η− =

b
m m  61.7 МэВ недооценена при 

CHIPS-аппроксимации (43.3 МэВ) так же, как 
и  для cc - 
мезонов. Что касается спиновой структуры Λb и Σb, 
экспериментальная разность 

Σ Λ
−0 0 �

b b
m m = 193.8 
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МэВ, а CHIPS дает 193 МэВ, тогда как в работе [27] 
предсказывается 183 МэВ, так что решение па-
растатистики для Λ/Σ-расщепления оказывается 
лучше в CHIPS.

Предсказания для еще не измеренных масс Ω*
b- 

и  *
cB -адронов приведены в табл. 5 вместе с предска-

заниями для барионов с двумя и тремя тяжелыми 
кварками. В  колонке Mth1 показаны предсказания 
наиболее полной работы [23], а в колонке Mth2 по-
казаны самые последние предсказания. Видно, что 
наиболее существенно (в скобках указано отклоне-
ние в  МэВ) предсказания CHIPS расходятся 
с  предсказаниями других работ только для 

( ) ( ) ( ) ( ) ( )−Ω Ξ Ω Ω′* * *� 22 , � 20 , �17 ,� � 21 , � 42 ,cc c bc bc bcB  и только 
последнее отклонение лежит за пределами точно-
сти CHIPS-аппроксимации.

3. СЛЕДСТВИЯ МОДЕЛИ ДЛЯ 
ИЗОСКАЛЯРНЫХ И ГИБРИДНЫХ АДРОНОВ

Основной целью CHIPS-аппроксимации 
адронных масс является подтверждение массовой 
формулы (1), подчеркивающей фундаментальное 

значение температуры кипения непертурбативно-
го вакуума Tc. Величину Tc можно сравнить с  ( )Λ =2

MS
�

= 255 ± 20 МэВ [35] или 03 qq = 283 ± 2 МэВ [36]. 
Сегодня Tc обычно называют температурой декон-
файнмента [37, 38]. Поправки на цветоэлектриче-
ские и  цветомагнитные взаимодействия кварков 
затрудняют определение точного значения величи-
ны Tc. Можно оценить массы адронов, состоящих 
только из глюонов, в которых цветоэлектрические 
и цветомагнитные поправки отсутствуют. Предска-
занные CHIPS массы рассчитываются по простой 
формуле: ( )= −2 1 ,n cm T n n  где n  — количество 
глюонов. Соответствующие массы: m2 = 623.7 МэВ, 
m3 = 1080.2 МэВ, m4 = 1527.7 МэВ, m5 = 1972.2 МэВ, 
m6 = 2415.5 МэВ. Массы изовекторных вакуумных 
f0-мезонов имеют массы: неопределенное значе-
ние 400–800 МэВ, 990 ± 20 МэВ, 1522 ± 25 МэВ, 
1982 ± 10 МэВ из [15] и X(2370), недавно открытый 
на  BESIII [39], которые соответствуют базовым 
массам CHIPS, несмотря на возможные поправки, 
связанные с  глюон-глюонным взаимодействием. 
То, что изоскалярные вакуумные мезоны облада-
ют уникальным свойством подавления γγ-канала 
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Рис. 2. Сравнение CHIPS масс (сплошная гистограмма) с данными PDG (кружки). Штриховая гистограмма — доля 
энергии связи в массе адрона.
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Таблица 2. Массы 1s-адронов из легких кварков

N H Спины Mex MCH1 |∆| MCH2 |∆|

1 π0 ( )↑ ↓ + ↑ ↓

2

u u d d 135.0 152.0 17.0 184.0 49.0

2 π− ↑ ↓d u 139.6 152.0 13.0 186.4 47.0

3 K+ ↑ ↓s u 493.7 485.0 8.7 493.0 0.7

4 K0 ↑ ↓s d 497.6 489.0 8.6 496.9 0.7

5
π

η8 ↑ ↓s s 683.7 678.0 4.1 678.9 4.8

6 ρ ω/ ↑ ↑q q 778.9 785.0 6.1 771.5 7.4

7 K*+ ↑ ↑s u 891.8 898.0 6.2 897.6 5.9

8 K*0 ↑ ↑s d 895.6 899.0 3.4 897.9 2.3

9 p u  ↑ u ↑ d ↓ 938.3 939.0 0.7 938.3 0.0

10 n d  ↑ d ↑ u ↓ 939.6 941.0 1.4 939.8 0.2

11 ϕ ↑ ↑s s 1019.5 1018.0 1.5 1018.1 1.4

12 Λ ↑ ↑ ↓ + ↑ ↓ ↑
2

s u d s u d 1115.7 1123.0 7.3 1116.7 1.0

13 Σ+ ↑ ↑ ↓u u s 1189.4 1182.0 7.4 1190.2 0.9

14 Σ0 ↑ ↑ ↓u d s 1192.6 1185.0 7.6 1191.1 1.5

15 Σ− ↑ ↑ ↓d d s 1197.4 1187.0 10.0 1191.7 5.7

16 Δ ↑ ↑ ↑q q q 1232.0 1231.0 1.0 1226.2 5.8

17 Ξ0 ↑ ↑ ↓s s u 1314.9 1320.0 5.1 1314.1 0.8

18 Ξ− ↑ ↑ ↓s s d 1321.7 1323.0 1.3 1318.2 3.5

19 Σ*+ ↑ ↑ ↑s u u 1382.8 1382.0 0.8 1379.6 3.2

20 Σ*0 ↑ ↑ ↑s u d 1383.7 1384.0 0.3 1380.3 3.4

21 Σ*− ↑ ↑ ↑s d d 1387.2 1385.0 2.2 1380.6 6.6

22 Ξ*0 ↑ ↑ ↑s s u 1531.8 1531.0 0.8 1531.2 0.6

23 Ξ*− ↑ ↑ ↑s s d 1535.0 1533.0 2.0 1531.1 3.9

24 Ω− ↑ ↑ ↑s s s 1672.4 1674.0 1.6 1678.7 6.3
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Таблица 3. Массы измеренных 1s-адронов с c-кварком

N H Спины Mex Mth |∆| MCH2 |∆|

25 D0 ↑ ↓c u 1864.8 1834 [23] 31.0 1864.0 0.8

26 D+ ↑ ↓c d 1869.7 1834 [23] 36.0 1866.8 2.9

27 Ds ↑ ↓c s 1968.4 1965 [23] 3.4 1978.2 9.8

28 D*0 ↑ ↑c u 2006.8 2002 [23] 4.8 2003.5 3.3

29 D*+ ↑ ↑c d 2010.3 2002 [23] 8.3 2004.3 6.0

30 *
sD ↑ ↑c s 2112.2 2119 [23] 6.8 2108.1 4.1

31 +Λc
↑ ↑ ↓ + ↑ ↓ ↑

2

c u d c u d 2286.5 2286 [23] 0.5 2288.3 1.8

32 ++Σc ↑ ↑ ↓u u c 2454.0 2460 [24] 6.0 2447.5 6.5

33 +Σc
u  ↑ d ↑ c ↓ 2452.6 2452 [25] 0.6 2448.4 4.2

34 Σ0
c

d  ↑ u ↑ c ↓ 2453.7 2445 [29] 8.9 2449.0 4.7

35 +Ξc
↑ ↑ ↓ + ↑ ↓ ↑

2

c u s c u s 2467.7 2468 [25] 0.3 2482.1 14.0

36 Ξ0
c

↑ ↑ ↓ + ↑ ↓ ↑
2

c d s c d s 2470.4 2474 [29] 3.6 2485.5 15.0

37 ++Σ*
c ↑ ↑ ↑u u c 2518.4 2513 [29] 5.4 2514.4 4.0

38 +Σ*
c ↑ ↑ ↑u d c 2517.4 2520 [25] 2.5 2515.0 2.4

39 Σ*0
c ↑ ↑ ↑d d c 2518.5 2513 [29] 5.5 2515.2 3.3

40 Ξ′с
+ ↑ ↑ ↓u s c 2578.2 2580 [29] 1.8 2560.6 18.0

41 Ξ′с
0 ↑ ↑ ↓d s c 2578.7 2580 [29] 1.3 2562.0 17.0

42 +Ξ*
c ↑ ↑ ↑u s c 2645.1 2649 [29] 3.9 2643.1 2.0

43 Ξ*0
c ↑ ↑ ↑d s c 2646.2 2649 [29] 2.8 2643.5 2.7

44 Ω0
c ↑ ↑ ↓s s c 2695.2 2696 [27] 0.8 2685.5 9.7

45 Ω*0
c ↑ ↑ ↑s s c 2765.9 2757 [27] 9.1 2775.0 9.1

46 ηc ↑ ↓c c 2983.9 3005 [23] 21.0 2998.9 15.0

47 ψ/J ↑ ↑c s 3096.9 3097 [23] 0.1 3081.7 15.0

48 ++Ξcc ↑ ↑ ↓c c u 3621.6 3579 [26] 42.0 3634.6 13.0
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Таблица 4. Массы измеренных 1s-адронов с b-кварком

N H Спины Mex Mth |∆| MCH2 |∆|

53 B− ↑ ↓b u 5279.3 5249 [23] 30.0 5278.8 0.5

54 B0 ↑ ↓b d 5279.7 5249 [23] 31.0 5280.7 1.0

55 B*− ↑ ↑b u 5324.7 5306 [23] 19.0 5328.2 3.5

56 B*0 ↑ ↑b d 5324.9 5306 [23] 19.0 5329.3 4.4

57 0
sB ↑ ↓b s 5366.9 5383 [23] 16.0 5358.7 8.2

58 *0
sB ↑ ↑b s 5415.4 5436 [23] 21.0 5413.3 2.1

59 Λ0
b

↑ ↑ ↓ + ↑ ↓ ↑
2

b u d b u d 5619.6 5629 [27] 9.4 5625.8 6.2

60 Ξ0
b

↑ ↑ ↓ + ↑ ↓ ↑
2

b u s b u s 5791.9 5803 [29] 12.0 5814.1 22.0

61 −Ξb
↑ ↑ ↓ + ↑ ↓ ↑

2

b d s b d s 5797.0 5803 [29] 6.0 5817.7 21.0

62 +Σb ↑ ↑ ↓u u b 5810.6 5804 [29] 6.6 5818.1 7.5

63 Σ0
b ↑ ↑ ↓u d b 5813.4 5811 [27] 2.4 5818.8 5.4

64 −Σb ↑ ↑ ↓d d b 5815.6 5821 [27] 6.4 5819.2 3.6

65 +Σ*
b ↑ ↑ ↑u u b 5830.3 5826 [26] 4.3 5842.2 12.0

66 Σ*0
b ↑ ↑ ↑u d b 5833.6 5826 [26] 7.6 5842.8 9.2

67 −Σ*
b ↑ ↑ ↑d d b 5834.7 5825 [29] 10.0 5843.1 8.4

68 Ξ′b
0   ↑ ↑ ↓u s b 5935.0 5939 [29] 4.0 5922.3 13.0

69 Ξ′b
–   ↑ ↑ ↓u s b 5935.0 5939 [29] 4.0 5923.4 12.0

70 Ξ*0
b   ↑ ↑ ↓u s b 5952.3 5944 [23] 8.3 5955.9 3.6

71 Ξ*
b

–   ↑ ↑ ↑u s b 5955.3 5960 [29] 4.7 5956.5 1.2

72 −Ωb  ↑ ↑ ↓s s b 6045.2 6067 [23] 22.0 6036.4 8.8

74 −
cB ↑ ↓b c 6274.5 6304 [23] 30.0 6274.7 0.3

84 ηb ↑ ↓b b 9398.7 9438 [23] 39.0 9409.4 11.0

85 Υ ↑ ↑b b 9460.4 9460 [23] 0.4 9454.7 5.7
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Таблица 5. Предсказания CHIPS для масс 1s-адронов

N H Спины Mth1 Mth2 MCH2

49 Ξ*
cc   ↑ ↑ ↑c c q 3661 [23] 3710 [26] 3710.1

50 Ωcc  ↑ ↑ ↓c c s 3710 [23] 3718 [26] 3739.7

51 Ω*
cc   ↑ ↑ ↑c c s 3800 [23] 3847 [26] 3828.4

52 Ωccc  ↑ ↑ ↑c c c 4777 [23] 4978 [26] 4805.6

73 −Ω*
b  ↑ ↑ ↓s s b 6096 [23] 6065 [27] 6075.8

75 −*
cB ↑ ↓b c 6342 [23] 6472 [28] 6322.7

76 Ξbc

↑ ↑ ↓ + ↑ ↓ ↑
2

b c q b c q 6846 [23] 6959 [26] 6945.8

77 Ξ′bc ↑ ↓ ↑b c q 6891 [23] 6876 [31] 6970.9

78 Ξ*
bc ↑ ↑ ↑b c q 6919 [23] 6983 [30] 7000.6

79 Ωbc

↑ ↑ ↓ + ↑ ↓ ↑
2

b c s b c s
6999 [23] 7098 [26] 7045.5

80 Ω′
bc

↑ ↓ ↑b c s 7036 [23] 6951 [31] 7072.0

81 Ω*
bc ↑ ↑ ↑b c c 7063 [23] 7065 [31] 7107.3

82 Ωbcc ↓ ↑ ↑b c c 7984 [23] 8229 [26] 8050.7

83 Ω*
bcc ↑ ↑ ↑b c c 8005 [23] 8358 [26] 8082.5

86 Ξbb  ↑ ↑ ↓b b q 10062 [23] 10429 [26] 10223.5

87 Ξ*
bb  ↑ ↑ ↑b b q 10101 [23] 10470 [26] 10251.4

88 Ωbb  ↑ ↑ ↓b b s 10208 [23] 10478 [26] 10306.6

89 Ω*
bb ↑ ↑ ↑b b s 10244 [23] 10607 [26] 10345.2

90 Ωbbc  ↑ ↑ ↓b b c 11139 [23] 11609 [26] 11241.3

91 Ω*
bbc ↑ ↑ ↑b b c 11163 [23] 11783 [26] 11294.1

92 Ωbbb ↑ ↑ ↑b b b 14276 [23] 15118 [26] 14455.9

распада, может свидетельствовать о значительной 
доле глюонных состояний в их структуре.

В модели CHIPS вместо орбитальных состоя-

ний ( )( )= = −1 1
L

LL P  в  конфайнмент 1s-адрона 
добавляется конституентный глюон с  −= 1 .PS  Для 
масс q -гибридов из-за модификации цветоэлек-
трических и цветомагнитных поправок расчет до-
статочно сложен, но  для 2qq g  и  для мезонов c 
бóльшим числом глюонов цветоэлектрические и 

цветомагнитные взаимодействия практически 
полностью экранированы, и  появляются те же 
mi-величины:    ρ ω π≈ ≈ ≈

3 3 2 4m m m m  для 3−- и 2−-ме-

зонов и   ≈
4 5am m  для 4+-мезонов. Можно ожидать, 

что  ρ ≈
5 6m m и есть соответствующий кандидат 

с  массой m = 2350 МэВ, но  неизвестным спином. 
Для более тяжелых кварковых пар можно ожидать 
роста базовой массы на 2Tc = 441 МэВ при добавле-
нии глюона. Сокращая цветомагнитное рас- 
щепление масс, например, рассматривая mqs =  
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+
=

*3
,

4
KK

m m
 дополнительная глюонная массовая 

добавка (например, ∆QQ = mQQg − mQQ для QQg: 2+- 
и 1+-мезонов и QQ: 1−- и 0−-мезонов) может быть 
рассчитана для K-, D-, Ds-, B- и  Bs-мезонов:  
∆sq = 590 МэВ, ∆cq = 477 МэВ, ∆cs = 466 МэВ, 
∆bq = 440 МэВ, ∆bs = 440 МэВ, которые при увели-
чении масс кварков стремятся к 441 МэВ. Для ба-
рионных гибридов трудно оценить изменение 
цветоэлектрических и  цветомагнитных поправок 
при добавлении конституентного глюона, тем 
не менее, для 

+ + +
Λ Σ Σ

 
 = + +
  *1 1 3

2 2 2

1
2

4qqsm m m m  

и

− − −
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 
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2 2 2
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2

4qqsgm m m m  

разность mqqsg − mqqs = 407 МэВ близка к 2Tc. Более 
точный расчет масс гибридов  — тема отдельной 
работы.

4. СЛЕДСТВИЯ МОДЕЛИ ДЛЯ АДРОНОВ, 
СОДЕРЖАЩИХ t-КВАРКИ

Другим следствием массовой формулы CHIPS 
является расчет масс мезонов и  барионов, содер-
жащих t-кварки. Кажется, что из-за своего корот-
кого времени жизни t-кварк вообще никогда 
не образует адроны, но зачем он тогда вообще су-
ществует в  природе? Известно, что бозон Хиггса 
распадается на 2γ через t-кварковую петлю. В этом 
смысле бозон Хиггса можно рассматривать как  
tt -мезон, но  обмен бозоном Хиггса между t и   
t -кварками, имеющими очень большие массы  
(mt ≈ 172.7 ГэВ), обуславливает очень большую энер-
гию связи, поскольку сила взаимодействия при об-
мене бозоном Хиггса пропорциональна пятой степе-
ни массы кварков. Энергия связи в  таком Хиггс- 
бозоне должна быть 2 · 172.7 − 125.3 ≈ 220 ГэВ.  
Тогда согласно грубой оценке такая же энергия 
связи должна быть и для бариона с двумя t-кварка-
ми, и  его масса должна быть сравнима с  массой 
Хиггс-бозона. Какова же должна быть полная 
энергия связи в барионе с  тремя t-кварками? Если 
энергия связи двух t-кварков такая же, как в бозоне 
Хиггса, то 3t-барион может иметь отрицательную 
полную энергию 3(172.7 − 220) ≈ −142 ГэВ.

Виртуальные частицы могут иметь мнимую 
массу, но  отрицательная масса, т.е. масса адрона, 
у которого энергия связи больше, чем сумма масс 
составляющих кварков, требует отдельного рас-
смотрения. Масса бозона Хиггса измерена доста-

точно точно, а вот масса t-кварка пока имеет боль-
шую неопределенность, поэтому есть три 
возможности: mt > mH  — тогда масса 3t-бариона 

может быть отрицательна, или    < <2
3 H t Hm m m   — 

тогда масса 3t-бариона положительна, но он будет 
стабилен, поскольку распад t-кварка увеличивает 
полную энергию в  конечном состоянии, либо 

   < 2
,

3t Hm m   тогда 3t-барион будет нестабилен. Со-
временные данные свидетельствуют о большей ве-
роятности первого варианта, но  тогда можно 
представить, что непертурбативный вакуум с  от-
рицательной плотностью энергии может включать 
кварковый  tt -конденсат. С  ростом плотности  
tt -конденсата становится существенным 3t-взаи-
модействие, и непертурбативный вакуум обретает 
отрицательную плотность энергии, как в  модели 
λϕ4-бозона Хиггса.

5. ЗАКЛЮЧЕНИЕ
Достаточно точная CHIPS-аппроксимация 

масс 1s-адронов доказывает фундаментальность 
константы температуры кипения физического 
вакуума Tc. По  сравнению с  MIT-моделью квар-
ковых мешков CHIPS-модель не требует высокой 
отрицательной плотности энергии физического 
вакуума, противоречащей величине Λ-члена 
уравнений ОТО. При CHIPS-аппроксимации масс 
полученные значения масс кварков несколько 
выше, чем в таблицах PDG [15]. Показано, что тот 
же метод расчета масс может быть распространен 
и на массы глюболов, и на массы гибридов, кото-
рые в CHIPS-модели 1s-адронов заменяют адроны 
с  ненулевым орбитальным моментом кварков. 
Экстраполяция массовой формулы CHIPS может 
быть использована как целеуказание на величины 
масс еще не открытых барионов, содержащих два 
или три тяжелых кварка.
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MASSES OF 92 1s-HADRONS IN THE CHIRAL INVARIANT  
PHASE SPACE MODEL
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In the Chiral Invariant Phase Space Model, the constituent quarks of hadrons are surrounded by nonperturbative 
vacuum with the boiling temperature Tc. The color-electric binding energy ECE is proportional to the reduced 
energy of quarks εij. The spin-products of the color-magnetic splitting ECM are calculated according to the 
simplified rules of para-statistics. The masses of the 61 hadrons are fitted by 8 parameters including the Tc value 
and the 5 masses of quarks. The masses of 21 hadrons are predicted including hadrons with two and three heavy 
quarks.


