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1. ВВЕДЕНИЕ123

В последнее время проявляется повышенный 
интерес к  теоретическому и  экспериментальному 
исследованию мультинейтронных структур. Это 
вызвано в  первую очередь экспериментальным об-
наружением резонансного состояния тетранейтрона 
[1, 2]. Несомненно, мультинейтронные структуры 
являются перспективными объектами для исследо-
ваний в виду того, что они, по-видимому, являются 
самым доступным вариантом исследования нук-
лон-нуклонных сил между нейтронами в отсутствии 
возможности осуществления прямых эксперимен-
тов по нейтрон-нейтронному рассеянию.

Первые публикации по  экспериментальному 
исследованию системы трех нейтронов (триней-
трона) появились в 60-х годах XX века. Так, поиск 
связанного состояния тринейтрона в  реакции  
3H(n, p)3n проводился в  работе [3], но  связанных 
состояний не  было обнаружено. Подробную 
историю безуспешных экспериментов по  поиску 
связанных и  резонансных состояний в  системе 
трех нейтронов можно найти в  обзорах [4, 5]. 
В недавней работе [6] в реакции 3H(t, 3He) 3n также 
не  обнаружили низколежащего тринейтронного 
резонанса. Главным итогом всех многочисленных 
экспериментов является, по-видимому, исключе-
ние связанного состояния тринейтрона, при этом 
резонансное состояние не исключается.

В обзорах [4, 5] также рассматривается история 
теоретического исследования системы трех ней-
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тронов. Среди самых свежих результатов нельзя 
не отметить недавние исследования на основе мо-
делей реалистических нуклон-нуклонных (NN ) 
взаимодействий [7–10]. В  исследованиях [7, 9] 
не было найдено резонансного состояния триней-
трона. В  работе [8] экстраполируются энергии 
связанного состояния тринейтрона, погруженного 
в  дополнительный внешний потенциал. Как ре-
зультат, в этой работе сделана оценка резонансной 
энергии тринейтрона без оценки ширины. Полу-
ченная энергия = 1.1(2)rE  MэВ близка к результа-
там расчетов [10] в рамках ab initio Гамовской моде-
ли оболочек без инертного кора (англ. No-core 
Gamow Shell Model, NCGSM), в  которой для 
энергии и  ширины резонанса тринейтрона полу-
чены значение = 1.29rE  MэВ и  = 0.91Γ  МэВ соот-
ветственно.

Метод SS-HORSE [11–15], основанный на фор-
мализме теории рассеяния в осцилляторном пред-
ставлении (англ. Harmonic Oscillator Representation 
of Scattering Equations, HORSE) [16, 17], оказался 
удобным инструментом для анализа резонансного 
и нерезонансного рассеяния. Достоинством мето-
да является то, что он позволяет описать собствен-
ные фазы рассеяния и  определять резонансные 
характеристики на основе вариационных расчетов, 
проведенных в  модельных пространствах с  срав-
нительно небольшим осцилляторным базисом. 
Универсальность метода SS-HORSE обусловлена 
тем, что в широком круге задач для анализа резо-
нансных и нерезонансных процессов оказывается 
достаточным знать набор собственных энергий 
матрицы гамильтониана, рассчитанных в  модель-
ных пространствах различной размерности, опре-
деляемых максимальным числом учитываемых ос-
цилляторных квантов возбуждения maxN ,  
и с различными значениями параметра Ω  осцил-
ляторного базиса. Так, в подходе SS-HORSE на ос-
нове результатов расчетов ab initio в модели оболо-
чек без инертного кора (англ. No-core  
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Shell Model, NCSM) с реалистическими NN-потен-
циалами JISP16 [18, 19] и Daejeon16 [20, 21] были 
исследованы резонансные состояния ядер 5He и 5Li 
в каналах упругого рассеяния нуклонов на ядре 4He 
[11, 12, 15], резонансные состояния ядра 7He в рас-
сеянии нейтрона на ядре 6He в различных парци-
альных волнах [22] и резонансные состояния ядра 
9Li [23]. Метод SS-HORSE оказался полезным 
и  для исследования связанных состояний: на  его 
основе был разработан новый метод экстраполя-
ции результатов NCSM на  бесконечно большие 
модельные пространства [23, 24], который помимо 
энергий связанных состояний позволяет опреде-
лять асимптотические нормировочные коэффици-
енты. Расчеты ab initio в  NCSM в  комбинации c 
SS-HORSE обычно обозначаются SS-HORSE–
NCSM.

В ранее упомянутых приложениях производил-
ся учет двухтельного континуума (кор + нуклон), 
однако при помощи осцилляторного представле-
ния теории истинного многочастичного рассеяния 
(ИМР) [25], которое также называют рассеянием 
A A→ , можно обобщить метод SS-HORSE–NCSM 
на  задачи распада ядерных систем на  несколько 
фрагментов в  приближении демократического 
распада (распадов, в которых ни одна из подсистем 
не образует связанных состояний) на  A фрагмен-
тов. Ранее в  рамках подхода SS-HORSE–NCSM 
нами была исследована возможность существова-
ния резонансного состояния системы четырех 
нейтронов (тетранейтрона) и рассчитаны энергия 
и ширина этого резонанса [26, 27]. В данной работе 
мы обсуждаем приложение этого метода для опи-
сания резонансов в системе трех нейтронов на ос-
нове реалистических моделей нуклон-нуклонного 
взаимодействия.

2. МЕТОД SS-HORSE–NCSM  
ДЛЯ ДЕМОКРАТИЧЕСКОГО РАСПАДА 
НА НЕЧЕТНОЕ ЧИСЛО ФРАГМЕНТОВ

Теория ИМР включает в  себя использование 
разложения по  гиперсферическим гармоникам 
(ГГ) (см., например, книги [28, 29]), широко при-
менявшееся для исследования различных атомных 
и  ядерных систем. Разложение волновой функции 
относительного движения A тел по  ГГ подразуме-
вает преобразование координат относительного 
движения фрагментов в совокупность гиперрадиуса 

	 2

=1

= ( )
A

i
i

ρ −∑ r R 	 (1)

(здесь ir  — радиус-векторы тел, R  — радиус-вектор 
центра масс) и (3 4)A −  углов, а  затем разложение 
волновой функции по  ГГ, т.е. по  собственным 
функциям на (3 3)A − -мерной сфере, которые ха-

рактеризуются гипермоментом K ( min=K K , 
min 2K + , ... ; min 0K ≥  — целое) и набором других 

квантовых чисел, необходимых для однозначного 
определения. При разложении по  ГГ уравнение 
Шредингера превращается в  систему радиальных 
уравнений, эквивалентную системе уравнений для 
многоканального рассеяния с единым порогом для 
всех каналов. Каждое уравнение имеет центробеж-
ный барьер 2( 1) /+ ρ  , где   — эффективный 
угловой момент, связанный с гипермоментом фор-
мулой (см., например, [25]) 
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Мы используем минимальное приближение де-
мократического распада, учитывая на асимптотике 
только одну ГГ с  min=K K , оправдывая это тем, 
что на асимптотике остальные ГГ подавлены в си-
лу большого центробежного барьера. Отметим, что 
в нашем подходе SS-HORSE–NCSM во “внутрен-
ней области”, где проводятся расчеты в  NCSM 
и  полностью учтено взаимодействие между ней-
тронами в состояниях с числом квантов возбужде-
ния maxN N≤ , учтены и  все ГГ с  допустимыми 
значениями max 1K N≤ + . Волновая функция 
в асимптотической области в таком случае харак-
теризуется единственным сдвигом фазы δ рассея-
ния A A→ , который рассчитывается в SS-HORSE 
как [11] 

	 tg
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Здесь Eν  — собственные энергии, полученные 
в  расчетах в  NCSM в  модельном пространстве 
с  максимальным числом квантов возбуждения 

maxN , minN  — минимальное число осцилляторных 
квантов в системе, определяемое принципом Пау-
ли, , ( )nS E  и  , ( )nC E  — свободные осцилляторные 
решения, явный вид которых известен [25]. Отме-
тим, что , ( )nS E  и  , ( )nC E , как, конечно, и  Eν, 
имеют зависимость от осцилляторного параметра 
Ω . Варьируя maxN  и  Ω , мы получаем сдвиг фазы 

рассеяния A A→  в некотором интервале. С помо-
щью параметризации сдвигов фаз ( )Eδ  рассеяния 
A A→  (и соответствующей S -матрицы рассеяния) 
мы можем найти их зависимости от комплексного 
импульса и локализовать полюсы S -матрицы, от-
вечающие резонансным и/или связанным состоя-
ниям.

S -матрицу рассеяния A A→ , выражающуюся 
через сдвиг фазы по формуле 

	 2 ( )( ) = ,i ES k e δ 	 (4)

удобно рассматривать как функцию импульса k, 
который связан с  энергией E  соотношением 
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2= ( ) (2 )E k M , где M   — полная масса системы.  
S -матрица рассеяния A A→  в случае четырех (как 
и  любого четного числа) фрагментов обладает 
стандартными аналитическими свойствами в силу 
того, что эффективный угловой момент  является 
целым. В  частности, это позволяет построить се-
мейство параметризаций S -матрицы (или сдвига 
фазы δ), учитывающих правильное поведение 
в пределе 0E → . Для таких построений критиче-
ски важны следующие свойства симметрии S -ма-
трицы в  комплексной плоскости импульсов k   
[30, 31]: 

	 1
( ) =

( )
S k

S k
− 	 (5)

и 

	 *
*

1
( ) = .

( )
S k

S k
	 (6)

В случае трех или любого другого нечетного 
числа фрагментов  является полуцелым, вслед-
ствие чего аналитические свойства S -матрицы 
рассеяния A A→  усложняются. Для анализа этих 
свойств можно воспользоваться теорией непре-
рывно меняющихся комплексных угловых момен-
тов, детально изложенной в книге [31]. Следствием 
этой теории является то, что для S -матрицы в ком-
плексной плоскости импульса k  имеется соотно-
шение 

	 2 1 2( ) = ( ) 1 ,i i iS ke e S k eπ π − π+ −  	 (7)

справедливое для любого действительного значе-
ния углового момента. В случае полуцелого  мы 
имеем 

	 1( ) = ( ) 2.iS ke S kπ −− + 	 (8)

Вышеупомянутое соотношение (6) остается спра-
ведливым для любого действительного значения 
углового момента.

В случае нечетного числа тел S -матрица рассея-
ния A A→  обладает свойствами симметрии (6) 
и  (8) и  имеет представление через функцию ( )X k  
[32]: 
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где 0q  — некоторый обезразмеривающий импульс. 
( )X k  является однозначной функцией комплекс-

ного импульса k, обладает свойством 

	 ( ) = ( )iX ke X kπ 	 (10)

и  принимает действительные значения при поло-
жительных действительных импульсах. Соответ-
ствующее выражение для сдвига фазы имеет вид 
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k
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Функцию ( )X k  можно параметризовать поли-
номом [32] 

	 2

=0

( ) = ,
W

i
i

i

X k w k∑ 	 (12)

наличие в котором только четных степеней k  обу-
словлено соотношением (10).

3. ПРИМЕНЕНИЕ МЕТОДА  
SS-HORSE–NCSM К ПОИСКУ РЕЗОНАНСОВ 

В СИСТЕМЕ ТРЕХ НЕЙТРОНОВ
В работе [32] представлены результаты для воз-

можных резонансных состояний, полученные 
в методе SS-HORSE–NCSM для тринейтрона. Для 
локализации полюсов S -матрицы мы использова-
ли нижайшие собственные энергии Eν со спин-чет-
ностью 3/2– и 1/2–, рассчитанные в ab initio NCSM 
с использованием различных NN -сил в модельных 
пространствах вплоть до  max 20N = .

Сравнивая сдвиги фаз, рассчитанные по  фор-
муле (3) и  с помощью функции ( )X k  (11), можно 
определить коэффициенты iw  параметризации 
(12). Затем, решая уравнение 

	 2 4 2 4
0( ) 2 ln( ) = 0K KX k k k q i k+ ++ − π 	 (13)

в  комплексной плоскости k  при условии 
< arg( ) <k−π π, можно локализовать положения 

полюсов S -матрицы.
Резонансные состояния появляются в случае до-

статочно “мягких” взаимодействий: Daejeon16 [20], 
JISP16 [18], а также в случае регуляризованного ме-
тодом ренорм-группы (англ. Similarity 
Renormalization Group, SRG) [33, 34] с параметром 

= 2Λ  фм–1 потенциала Idaho N3LO [35], полученно-
го в  киральной эффективной теории поля (англ. 
Chiral Effective Field Theory, χEFT). Но низколежа-
щие резонансы не  возникают при использовании 
“жестких” нерегуляризованных потенциалов  
χEFT Idaho N3LO [35] и LENPIC N4LO [36]. Резуль-
таты для полученных резонансных энергий rE  и ши-
рин Γ представлены в  табл. 1. В  таблице в  скобках 
даны оценки погрешности результатов, которые 
были сделаны на основе разницы положений полю-
сов, полученных в  модельных пространствах с 

max = 18N  и  max = 20N . Низколежащие резонанс-
ные состояния 3/2– и  1/2– прак- 
тически вырождены по  энергии и  имеют близкие 
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ширины для каждого “мягкого” NN-взаимодей-
ствия. Это обстоятельство вызвано тем, что нижай-
шие собственные энергии со спин-четностями 3/2– 
и 1/2– в спектре NCSM практически вырождены для 
каждого рассмотренного NN-взаимодействия.

Отметим, что мы не  использовали трехчастич-
ные силы, так как на данный момент не существует 
моделей такого взаимодействия для суммарного 
изоспина = 3/2T . В  этом смысле использование 
NN-взаимодействий Daejeon16 или JISP16 является 
более оправданным, так как эти взаимодействия 
с  помощью модификации свойств на  внемассовой 
поверхности эффективно учитывают NNN-силы 
и обеспечивают хорошее описание легких ядер. От-
метим, что оба взаимодействия дают результаты, 
близкие к  полученным с  SRG-регуляризованным 
NN-взаимодействием Idaho N3LO. Наши предсказа-
ния для ширины тринейтрона Γ в расчетах с NN-вза-
имодействием Daejeon16 близки к  предсказаниям 
NCGSM [10], где получено значение = 0.91Γ  МэВ, 
однако энергии резонанса тринейтрона, полученные 
как в NCGSM = 1.29rE  MэВ [10], так и квантовым 
методом Монте-Карло с использованием внешнего 
поля и экстраполяцией на случай отсутствия этого 
поля = 1.1(2)rE  MэВ [8], заметно выше наших ре-
зультатов с  любым из  “мягких” взаимодействий, 
представленных в табл. 1.

Отметим, что в работах [8, 10], в которых пред-
сказывается резонансное состояние тринейтрона, 
не  упомянута спин-четность состояния. В  свою 
очередь, нами в  [32] предсказываются два резо-
нансных состояния со спин-четностями 3/2– и 1/2– 
с  одинаковыми в  пределах оценок погрешностей 
энергиями и ширинами.

В табл. 1 также представлены энергии и шири-
ны резонансного состояния тетранейтрона, полу-
ченные в SS-HORSE–NCSM с теми же NN-взаи-
модействиями и  опубликованные в  работах [26, 
27]. Видно, что для любого представленного взаи-
модействия резонанс тринейтрона лежит ниже ре-
зонанса тетранейтрона, что согласуется с вывода-

ми работ [8, 10]. Для сравнения приведем 
результаты для энергии тетранейтронного резо-
нанса = 2.1(2)rE  МэВ работы [8] и  энергии 

= 2.64rE  МэВ и  ширины = 2.38Γ  МэВ работы 
[10]. Наши предсказания существенно меньше как 
для энергии, так и для ширины тетранейтрона.

4. ЗАКЛЮЧЕНИЕ
В подходе SS-HORSE–NCSM мы даем  ab initio 

предсказания для энергий 0.35–0.5rE ≈  МэВ 
и ширин 0.7–1Γ ≈  МэВ вырожденных резонансов 
3 2−  и  1 2−  тринейтрона с  реалистическими  
NN-потенциалами JISP16 и  Daejeon16, которые 
не  требуют привлечения трехнуклонных сил. Ана-
логичные предсказания получаются и с SRG-смяг-
ченным NN-взаимодействием киральной эффек-
тивной теории поля Idaho N3LO. Наши предсказания 
энергий этих резонансов лежат ниже результатов, 
полученных квантовым методом Монте-Карло 
с использованием внешнего поля и экстраполяцией 
на  случай отсутствия этого поля [8] и  в гамовской 
модели оболочек [10], но, как и в работах [8, 10], мы 
предсказываем резонансы тринейтрона ниже резо-
нанса тетранейтрона. В расчетах с “жесткими” ис-
ходными NN-потенциалами киральной эффектив-
ной теории поля низколежащих резонансов 
тринейтрона и тетранейтрона не возникает.
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