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1. ВВЕДЕНИЕ12

Одной из  важных задач современной ядерной 
физики является изучение нарушения заря-
довой симметрии (НЗС) ядерных сил. Данное 
нарушение отражается, в  частности, в  различии 
протон-протонной (pp) и  нейтрон-нейтронной 
(nn) синглетных длин рассеяния. Длину pp-рас-
сеяния app извлекают из  прямого эксперимента 
по рассеянию протона на водородной мишени [1]. 
Из-за отсутствия чисто нейтронной мишени длину 
nn-рассеяния ann извлекают из  реакций с  двумя 
нейтронами в  конечном состоянии, например, 
n + d  →  n + n + p [2] и  d + d  →  p + p + n + n [3]. 
В  работе [4] было высказано предположение, что 
на  извлекаемую величину длины nn-рассеяния 
из  реакций nd- и  dd-развалов может оказывать 
влияние взаимодействие nn-пары с  протоном 
или протонной парой. Можно предположить, что 
аналогичное влияние на  величину длины pp-рас-
сеяния, извлекаемую из  малонуклонных реакций 
с двумя протонами в конечном состоянии, напри-
мер, d + p → n + p + p и d + d → p + p + n + n, мо-
жет оказать взаимодействие pp-пары c нейтроном 
или нейтронной парой, соответственно. 
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d + 1H  →  n + p + p, целью которых является ис-
следование влияния трехнуклонных (3N) сил 
на  величины извлекаемых низкоэнергетических 
характеристик pp-взаимодействия — энергии вир-
туального состояния и  синглетной длины рассея-
ния. На ускорителе У-120 НИИЯФ МГУ были про-
ведены несколько пучковых сеансов, в  результате 
которых накоплены экспериментальные данные, 
разработана процедура извлечения и  проведен 
анализ данных величины энергии pp-состояния.

2. КИНЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ 
И ЭКСПЕРИМЕНТАЛЬНАЯ  

УСТАНОВКА
Для определения оптимальных парамет-

ров эксперимента было проведено двухэтап-
ное кинематическое моделирование реакции 
d + 1H → p + p + n. На первом этапе моделирова-
лась двухчастичная реакция d + 1H → (pp) + n при 
энергии дейтронов 15.3  МэВ, определялись углы 
вылета и кинетические энергии нейрона и pp-па-
ры. На  втором этапе рассматривалась реакция 
трехчастичного развала d + 1H  →  p + p + n, при 
этом угол вылета “развального” протона выбира-
ется близким к углу вылета pp-пары. Проведенное 
моделирование показало, что при определенных 
кинематических условиях имеется зависимость 
формы энергетического распределения “раз-
вальной” частицы (двух пиков в  энергетическом 
спектре протонов) от  энергии квазисвязанного 
синглетного pp-состояния. Присутствие двух 
пиков в энергетическом спектре протонов объяс-
няется тем, что в реакциях с образованием и раз-
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валом виртуального pp-состояния при условии 
детектирования “развального” протона под уг-
лом, близким к углу вылета pp-системы, попасть 
в детектор могут только частицы от развала pp-со-
стояния, вылетающие в системе центра масс или 
вперед (~0°), или назад (~180°). При этом разность 
между энергиями в спектре зависит от величины 
энергии pp-состояния. Поэтому сравнение полу-
ченного в эксперименте энергетического спектра 
протонов с  результатами моделирования позво-
лит определить энергию виртуального квазисвя-
занного pp-состояния в  трехчастичной реакции 
d + 1H  →  p + p + n. Подробно кинематическое 
моделирование представлено в [5, 6].

На рис. 1 представлена экспериментальная схе-
ма, спроектированная по  результатам проведен-
ного кинематического моделирования. Протоны 
регистрируются под углом 18° ± 2° телескопом 
кремниевых ΔE–E-детекторов. Диапазон измере-
ния энергии протонов 0.5–9  МэВ. С  кремниевых 
детекторов сигналы поступают на предусилители, 
усилители, и затем сигнал от E-детектора поступа-
ет на формирователь со следящим порогом (ФСП), 

а  от ΔE-детектора  — на  цифровой сигнальный 
процессор (ЦСП). Нейтроны регистрируются под 
углом 38° ± 1.5° по  другую сторону от  оси пучка 
жидким водородосодержащим сцинтиллятором 
EJ-301. Диапазон измерения энергии нейтронов 
2–6 МэВ. Сигнал от нейтронного детектора через 
усилитель поступает на другой ФСП. Через ФСП 
сигналы от  E-детектора и  нейтронного детектора 
поступают на  время-амплитудный преобразо-
ватель, позволяющий отбирать такие события, 
в которых время пролета соответствует диапазону 
энергий нейтрона, установленному в ходе кинема-
тического моделирования. Оцифровывание сиг-
налов осуществляется с  помощью ЦСП DT5720, 
через буферную память которого они передаются 
в  основной компьютер. Обработка информации 
ведется в режиме offline и заключается в определе-
нии амплитуд и  площадей импульсов, определе-
нии времен возникновения сигналов в детекторах, 
цифровом анализе формы импульсов для n–g-раз-
деления, отборе совпадающих событий и  получе-
нии энергетических и временных спектров.
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Рис. 1. Экспериментальная схема, спроектированная по результатам кинематического моделирования: 1 — ваку-
умная камера рассеяния (∅ 23 см с выходным окном из лавсана толщиной 20 мкм), 2 — мишень CH2 (толщина 
30 мкм), 3 — нейтронный детектор (∅ 5 см, толщина 5 см), 4 — ΔE-детектор (∅ 5 мм, толщина 25 мкм), 5 — E-де-
тектор (∅ 10 мм, толщина 1000 мкм).
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3. АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ 
ДАННЫХ

Экспериментальные данные обрабатывались 
по следующему алгоритму.

1.  Обработка осциллограмм сигналов от  де-
текторов заряженных частиц и нейтронов, время- 
амплитудного преобразователя, включая разделе-
ние нейтронов и гамма-квантов по процедуре PSD 
(на  данном этапе производится анализ данных, 
позволяющий выделить преимущественно собы-
тия, соответствующие физическим процессам, при 
значительном подавлении фона).

2.  Выделение событий, соответствующих про-
тонам на ΔE–E-диаграмме.

3.  Восстановление энергий протонов, образую-
щихся в мишени.

4.  Анализ спектров восстановленных энергий 
протонов, измеренных в  совпадении с  нейтро
нами.

На рис.  2 представлена полученная в  экспе-
рименте двумерная ∆E–E-диаграмма. С  учетом 
всех экспериментальных особенностей (толщины 
поглощающих слоев детектирующей системы, 
энергетические пороги в  детекторах и  т.д.) от-
бирались события, соответствующие протонам 
в  диапазоне потерь в  Е-детекторе от  1 до  8  МэВ. 
На  диаграмме на  протонном локусе отмечена 
область моделированных событий от развала син-
глетной pp-системы с  Epp = 400 ± 100  кэВ и  углом 
вылета обоих протонов в интервале 18° ± 2°. Также 
на  рис.  2 отмечены “пятна”, соответствующие 
нескольким фоновым двухчастичным реакциям. 
В  результате моделирования были получены ве-
личины энергий, соответствующих центрам этих 
“пятен”, которые позволили значительно расши-
рить область калибровки кремниевых детекторов, 
выполненной при помощи источника 226Ra.

Отбор событий протонного локуса в  совпаде-
нии с нейтронами приводит к энергетическим кор-
реляциям Ep – En, представленным на рис. 3. Видно 
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Рис.  2. Экспериментальная ∆E–E-диаграмма. “Пятна” соответствуют реакциям: 1  — d + p  →  d + p; 2  — 
d + 12C → d + 12C; 3 — d + 12C → p + 13C; 4 — d + p → p + d. Серая область на протонном локусе — моделированные 
события от развала синглетной pp-системы с Epp = 400 ± 100 кэВ и углом вылета обоих протонов в интервале 18° ± 2°. 
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достаточно равномерное заполнение области 
в интервале энергий протонов от ~2.7   до 9 МэВ. 
Протоны с  энергией менее 2.7  МэВ не  долетают 
до  E-детектора, поэтому проецирование дву-
мерного распределения на  ось Ep не  приводит 
к двухпиковой структуре в энергетическом спектре 
протонов. Это подтверждается также практически 
полным отсутствием экспериментальных точек 
в моделированной области событий от развала син-
глетной pp-системы с Epp = 400 ± 100 кэВ в области 
низкоэнергетичного пятна, показанной на рис. 2.

Решение уравнений законов сохранения энер-
гии и  импульса дает возможность восстановить 
энергию, импульс и  угол вылета нерегистрируе-
мой частицы. Кроме того, дополнительный отбор 
по  массе нерегистрируемой частицы, соответ-
ствующей массе протона с  ошибкой определения 
не более 1%, на наш взгляд, исключает вклад фо-
новой реакции d + 12C → p + n + 12C в область ин-
тересуемых событий реакции d + 1H  →  p + n + p. 
Восстановление угла вылета нерегистрируемого 
протона позволяет отобрать экспериментальные 
события с вылетом обоих “развальных” протонов 
под углом, близким к  углу вылета синглетной 

pp-системы. Поскольку оба протона от  развала 
pp-пары коррелируют по энергии (один имеет бóль-
шую энергию, а другой — меньшую), то протоны 
с  меньшей энергией не  долетают до  E-детектора 
и не регистрируются ∆E–E-системой, однако вос-
становить значение энергии такого нерегистрируе-
мого протона ниже порога регистрации возможно. 
Таким образом, спектры энергий обоих протонов 
были просуммированы для извлечения значения 
энергии виртуального синглетного pp-состояния 
[7]. Форма итогового спектра по  энергии про-
тонов сильно зависит от  отбора по  углу вылета 
нерегистрируемых протонов, на  рис.  4 показаны 
несколько вариантов таких спектров в  зависимо-
сти от  углового захвата нерегистрируемых прото-
нов. Видно, что с  увеличением углового захвата 
начинает замываться долина между пиками. Для 
извлечения величины энергии виртуального син-
глетного pp-состояния использовался спектр при 
угле вылета нерегистрируемых протонов 18° ± 2°, 
соответствующий угловому аксептансу ∆E–E-си-
стемы.

На рис. 5 представлено сравнение полученного 
в эксперименте в совпадении с нейтронами энер-
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Рис.  3. Энергетические корреляции Ep  –  En, измеренные в  реакции d + 1H  →  p + p + n при Θp = 18° ± 2° 
и Θn = 38° ± 1.5°.
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Рис. 4. Итоговый спектр по энергии протонов, измеренный в совпадении с нейтронами, в зависимости от угла вы-
лета второго нерегистрируемого протона Θp = 18° ± 0.5° (точечная кривая), Θp = 18° ± 2° (сплошная) и Θp = 18° ± 4° 
(штриховая).
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Рис. 5. Сравнение полученного в эксперименте энергетического спектра протонов с моделированными спектрами, 
соответствующими Epp = 200 ± 10 (точечная кривая), 400 ± 50 (сплошная), 600 ± 50 кэВ (штриховая).
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гетического спектра протонов с  моделированны-
ми спектрами, соответствующими Epp = 200 ± 10 
(точечная линия), 400 ± 50 (сплошная линия), 
600 ± 50 (пунктирная линия) кэВ. Из рис. 5 видно, 
что полученный в  эксперименте спектр ближе 
всего соответствует величине Epp = 400 ± 50  кэВ, 
что позволяет ориентироваться на примерную ве-
личину Epp при использовании метода χ2.

Величина Epp определялась в два этапа по методу 
минимума χ2. На  первом этапе рассматривалась 
зависимость χ2 от ΔEpp для различных значений Epp 
(величина ΔEpp представляет собой ширину интер-
вала, в котором отбираются события, и задает опти-
мальные границы определения Epp). На рис. 6 пред-
ставлены несколько вариантов таких зависимостей. 
Отсюда, вычислив наименьшее значение χ2, для 
каждого фиксированного Epp можно определить оп-
тимальное значение ΔEpp opt. Таким образом, на пер-
вом этапе был получен массив пар (Epp; ΔEpp opt). 

На втором этапе рассматривалась зависимость 
χ2 от  массива пар (Epp;  ΔEpp  opt). Для определения 
величины Epp значения χ2(Epp;  ΔEpp  opt) аппрокси-
мировались квадратичным полиномом (рис.  7). 

Таким образом, проведенный χ2-анализ показал, 
что наименьшее значение полинома достигается 
при энергии виртуального синглетного pp-состоя-
ния Epp = 375 ± 5 кэВ, ∆Epp = 70 ± 3 кэВ. 

В табл. 1 представлено сравнение эксперимен-
тальных данных, полученных в настоящей работе, 
с  результатами других экспериментов [8–10]. 
В  работах [8–10] результаты представлены либо 
в  виде app, либо в  виде Epp. В  табл.  1 звездочкой 
обозначены пересчитанные нами значения Epp и app 
при значении эффективного радиуса rpp = 2.85 Фм 
[11]. Для пересчета значений Epp и app использова-
лась формула (3) из работы [12]. Для вычисления 
погрешности величины app в  случае результата 
настоящей работы использовалась величина ∆Epp. 
Пересечение доверительных интервалов результа-
та настоящей работы и данных работы [10] может 
указывать на  эффективное усиление pp-взаимо-
действия в  реакциях d + 2H и  d + 1H при близких 
первичных энергиях. 

Результаты настоящей работы и  группы Шан-
хайского института ядерных исследований (Китай) 
[10] существенно превышают по  абсолютному 
значению величину app = –7.8063 ± 0.0026  Фм, из-
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Рис. 6. Зависимость χ2 от ΔEpp для различных значений Epp. Кривые соответствуют значениям Epp: 1 — 330, 2 — 340, 
3 — 350, 4 — 360, 5 — 375 кэВ.
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влеченную из эксперимента по свободному рассея-
нию протона на протоне [8], в то время как данные 
Института экспериментальной ядерной физики 
(Карлсруэ, Германия) [10] согласуются с этим значе-
нием. Можно предположить возможное объяснение 
данной картины в рамках дибарионной концепции 
ядерных сил, которая предсказывает достаточно 
сильное 3N-взаимодействие, обусловленное обме-
ном легким скалярным σ-мезоном между сингле-
том (дипротоном) и  третьей частицей (нейтроном 
или динейтронной парой) [13]. При этом влияние 
этого взаимодействия на  низкоэнергетические 

характеристики pp-взаимодействия может зависеть 
от  скорости разлета фрагментов. Можно предпо-
ложить, что при более высокой энергии реакции 
развала время, когда все три частицы (два протона 
и  нейтрон или два протона и  динейтронная пара) 
находятся близко друг к другу меньше, и, следова-
тельно, вклад 3N-сил также становится меньше.

Для подтверждения этого предположения 
планируется проведение других экспериментов, 
в частности, на пучках протонов с энергией 7.5 МэВ 
и пучках дейтронов с энергией 15.3 МэВ циклотро-

ΔE , ÌýÂPP
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χ²     + 1min
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Рис. 7. Зависимость χ2 от Epp. Каждому значению Epp соответствует свое оптимальное значение ΔEpp opt. Кривая — ап-
проксимация квадратичным полиномом. Штриховыми линиями показаны ошибки в определении Epp.

Таблица 1. Сравнение результатов измерения величин Epp и app, полученных в различных исследовательских 
группах (результаты, отмеченные *, пересчитаны из значений Epp или app, при значении эффективного радиуса 
rpp = 2.85 Фм [11])

Реакция E0, МэВ Epp, кэВ app, Фм Литература

свободное pp-рассеяние 0–30 510* –7.8063 ± 0.0026 [8]

d + 1H → p + p + n 52.3 550 ± 70* –7.5 ± 0.5 [9]

d + 2H → p + p + n + n 15.7 450 ± 50 +
−− 0.5

0.68.4 * [10]

d + 1H → p + p + n 15.3 375 ± 5 +
−− 0.8

1.19.2 * настоящая работа

∆Еpр, МэВ
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на У-120 НИИЯФ МГУ по исследованию реакций 
p + 2H → p + p + n и d + 2H → p + p + n + n. Такие 
исследования либо подтвердят наше предположе-
ние о влиянии 3N-сил на извлекаемые низкоэнер-
гетические характеристики pp-взаимодействия, 
либо опровергнут их. Планируется также прове-
дение теоретического исследования с целью полу-
чения “ядерной” длины pp-рассеяния в результате 
удаления кулоновского вклада из  измеренной 
нами величины длины pp-рассеяния. Такое ис-
следование необходимо для определения степени 
НЗС ядерных сил.

4. ЗАКЛЮЧЕНИЕ
В результате проведенного кинематического 

моделирования реакции d + 1H  →  p + p + n уста-
новлено, что анализ формы энергетического спек-
тра “развальных” протонов при определенных 
условиях эксперимента может дать информацию 
о  низкоэнергетических характеристиках pp-взаи-
модействия. Определены оптимальные параметры 
эксперимента и  схема экспериментальной уста-
новки. В результате нескольких пучковых сеансов, 
проведенных на  ускорителе У-120 НИИЯФ МГУ, 
исследована реакция d + 1H → p + p + n. В кинема-
тически полном эксперименте при энергии дей-
тронов 15.3  МэВ регистрировались в  совпадении 
протон от развала синглетного pp-состояния и вто-
ричный нейтрон. В результате исследования опре-
делены низкоэнергетические характеристики pp-
взаимодействия: величина энергии виртуального 
синглетного pp-состояния Epp = 375 ± 5 кэВ и соот-
ветствующее ей значение синглетной длины 
pp-рассеяния app =  0.8

1.19.2+
−−  Фм. Высказано предпо-

ложение, что на  извлекаемые характеристики pp-
взаимодействия в  реакциях с  двумя протонами 
в конечном состоянии может оказывать вклад 3N-
сил. Предполагается проведение дальнейших ис-
следований с  большей статистикой и  лучшими 
фоновыми условиями. Также предполагаются ра-
боты по  измерениям тока пучка для получения 
оценок сечения данной реакции.
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DETERMINING LOW-ENERGY CHARACTERISTICS  
OF THE pp INTERACTION IN THE d + 1H → p + p + n REACTION 
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The study results of the d + 1H → p + p + n reaction are presented. A kinematically complete experiment with 
using a deuteron beam energy of 15.3 MeV at the U-120 accelerator of the MSU SINP was carried out. A proton 
from the breakup of the singlet pp state and a secondary neutron were registered in coincidence. As a result of the 
study, the low-energy characteristics of pp interaction, namely, the energy value of the virtual singlet pp state and 
the corresponding value of the pp scattering length were determined.


