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Исследуется взаимодействие быстрых нейтронов с ядром 10B при энергиях от 3 до 7 МэВ с целью выделе-
ния реакции с рождением ядра 8Be* в возбужденном состоянии, которая выделяется на фоне трехчастич-
ной реакции с вылетом ядра 3H и двух α-частиц. Проведенное моделирование ионизационных потерь 
вторичных ядер 3H и 4He в твердых и газовых слоях двух позиционно-чувствительных многопроволочных 
детекторов с чувствительными размерами 100 × 100 и 50 × 50 мм2 показало, что на диаграммах, постро-
енных из потерь в двух газовых слоях, события локализуются в различных областях. Результат экспери-
мента с детектором 100 × 100 мм2 показал возможность выделения реакции с вылетом ядер 3H и 8Be*.
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1. ВВЕДЕНИЕ12

Распад ядра 8Be представляет интерес для 
изучения его внутренней структуры, состоящей 
из  ядерных фрагментов [1]. Ядро 8Be распадается 
преимущественно на  две α-частицы. Однако 
в ядерных реакциях с образованием ядра 8Be могут 
вылетать две α-частицы без образования этого 
ядра, и  поэтому эта реакция является фоновой. 
Следовательно, важной задачей является нахожде-
ние метода выделения в эксперименте тех событий, 
в которых образуется данное ядро. Например, в ра-
боте [1] используется кинематический критерий 
для ограничения на углы разлета двух ядер 4He для 
выделения событий с образованием 8Be.

В реакции взаимодействия нейтрона с  ядром 
10B при энергиях от 3 до 7 МэВ может образоваться 
ядро 8Be. При этом, если идентифицировать об-
разование в  реакции ядра 3H, то только реакция 
с вылетом двух α-частиц без образования 8Be явля-
ется фоновой реакцией. Полное сечение реакции 
n + 10B  →  3H + X и  идентификация 3H по  иони-
зационным потерям в  газовых детекторах было 
измерено в работе [2], но не исследовалось обра-
зование ядра 8Be. Ядро 8Be в основном и возбуж-
денном состояниях может образоваться в реакциях 
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n + 10B → 3H + 8Be и n + 10B → 3H + 8Be*. В первой 
реакции 8Be распадается на две α-частицы по силь-
ному взаимодействию. Во второй реакции сначала 
из 8Be* испускается γ-квант по электромагнитному 
взаимодействию с переходом ядра 8Be в основное 
состояние, а  затем 8Be распадается на  две α-ча-
стицы. Распад 8Be* сопровождается в  основном 
испусканием γ-кванта, однако с  вероятностью 
~10–3 ÷ 10–5 [3] возможно испускание электрон-по-
зитронной пары внутриядерной конверсии.

Недавно при образовании возбужденного со-
стояния 8Be* в  реакции взаимодействия протона 
с  ядром 7Li было найдено указание на  существо-
вание нейтральной экзотической частицы, канди-
дата в частицы темной материи [3]. В зависимости 
выхода реакции 7Li(p, e+e−)4He + 4He от угла разле-
та электрона и позитрона была обнаружена анома-
лия, которая находится в противоречии с предска-
занием Стандартной модели [4]. Мы предлагаем 
метод для отбора событий с  рождением ядра 8Be 
с  использованием нового позиционно-чувстви-
тельного детектора нейтронов на  основе слоя 10B 
и  многопроволочной пропорциональной камеры 
[5] в реакциях n + 10B → 3H + X.

2. РАСЧЕТЫ ИОНИЗАЦИОННЫХ ПОТЕРЬ 
В 10B-ДЕТЕКТОРЕ 100 × 100 мм2

В лаборатории атомного ядра ИЯИ РАН был 
создан позиционно-чувствительный детектор 
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на основе слоя 10B и многопроволочной пропорци-
ональной камеры с  чувствительными размерами 
100×100 мм2 [6]. Он использовался как для реги-
страции пространственного распределения потока 
тепловых нейтронов, так и для исследования ядер-
ных реакций с  ядром 10B под действием быстрых 
нейтронов. Он имеет слабую чувствительность 
к  γ-квантам и  к фону рассеянных нейтронов. 
Пространственное разрешение составляет 2  мм 
по горизонтали и 4 мм по вертикали. 

Процедура отбора с  использованием корре-
ляции сигналов ионизационных потерь от  двух 
газовых промежутков была осуществлена для 
идентификации реакций n + 10B  →  4He + 7Li 
и  n + 10B  →  4He + 7Li + γ. В  результате, сравни-
вая их экспериментальные вклады с расчетными 
по  методу Монте-Карло, было получено соот-
ношение выходов реакций с  вылетом 7Li и  7Li* 
в зависимости от максимальной энергии нейтро-
нов [7].

Для моделирования фоновой реакции 
n + 10B → 3H + 4He + 4He была разработана про-
грамма, которая считывала файл с  энергиями 
и  углами вылета 3H и  одного из  ядер 4He, пред-
варительно вычисленными из случайных значе-
ний углов, соответствующих кинематике этой 
реакции. При этом сама кинематика трехчас
тичной фоновой реакции рассчитывалась с  ис-
пользованием программы [8]. Для этих значений 
энергий и  углов вторичных ядер вычислялись 
ионизационные потери в  двух чувствительных 

зазорах детектора, и событие принималось, если 
ядро 3H проникало во второй зазор. При этом 
учитывалось сечение данной реакции. Результат 
представлен на рис. 1.

Исследуемая реакция n + 10B → 3H + 8Be(2+; 0) 
моделировалась как двухчастичная реакция с  вы-
числением кинематики реакции внутри програм-
мы. Косинус угла разлета вторичных ядер в с.ц.м. 
разыгрывался равномерным распределением, для 
каждого события вычислялись энергии и углы вы-
лета ядер 3H и 8Be* и ионизационные потери в двух 
чувствительных зазорах детектора, и  событие 
принималось, если ядро 3H проникало во второй 
зазор. Результат представлен на рис. 2.

Можно заметить, что область основной части 
событий для реакции n + 10B  →  3H + 4He + 4He 
на диаграмме на рис. 1 расположена ниже 0.25 МэВ, 
в то время как область основной части событий для 
реакции n + 10B → 3H + 8Be* находится в диапазо-
не от 0.2 до 0.5 МэВ.

На рис.  3 представлена экспериментальная 
диаграмма событий из амплитуд сигналов от пер-
вого и  второго зазоров детектора с  чувствитель-
ными размерами 100 × 100  мм2. На  ней в  области 
амплитуд до  0.4  МэВ видны два локуса событий, 
соответствующих этим двум реакциям. Исходя 
из  сравнения экспериментальных и  моделиро-
ванных данных локус в  области амплитуд от  0.2 
до 0.4 МэВ, выделенный штриховой линией, при-
писывается реакции n + 10B → 3H + 8Be.
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Рис. 1. Моделированная диаграмма корреляции ионизационных потерь тритона из реакции n + 10B → 3H + 4He + 4He 
в двух последовательных зазорах детектора 100 × 100 мм2.
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Рис. 2. Моделированная диаграмма корреляции ионизационных потерь тритона из реакции n + 10B → 3H + 8Be* 
в двух последовательных зазорах детектора 100×100 мм2.
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Рис. 3. Экспериментальная диаграмма корреляции амплитуд, вызванных заряженными частицами из взаимодей-
ствия нейтронов с ядром 10B в двух последовательных зазорах детектора 100×100 мм2. Штриховая область соответ-
ствует реакции n + 10B → 3H + 8Be.
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3. РАСЧЕТЫ ИОНИЗАЦИОННЫХ ПОТЕРЬ 
В 10B-ДЕТЕКТОРЕ 50 × 50 мм2

Новый детектор с чувствительными размерами 
50×50 мм2 [5] имеет пассивный 1.7 мм газовый за-
зор между 3 мкм слоем 10B и первым проволочным 
катодом X1, первый активный 2 мм газовый зазор 
между X1 и первой сеткой Y1, второй активный 4 мм 
газовый зазор между Y1 и анодом, третий активный 
4  мм газовый зазор между анодом и  второй сет-
кой X2 и четвертый активный 2 мм газовый зазор 
между X2 и  вторым катодом Y2. Таким образом, 
могут быть построены 3 + 2 + 1 = 6 комбинаций 
величин ионизационных потерь для идентифи-
кации различных выходных каналов реакции при 
взаимодействии нейтронов с  ядром 10B. Однако 
в  дальнейшем мы будем рассматривать корреля-
цию суммы потерь в двух первых активных зазорах 
от суммы потерь в двух последних активных зазо-
рах, заряды в  импульсе тока которых собираются 
на катоде X1 и сетке Y1 и, соответственно, сетке X2 
и катоде Y2. Схематическая конструкция детектора 
представлена на рис. 4.

При моделировании ионизационных по-
терь от  вылетающих ядер фоновой реакции 
n + 10B → 3H + 4He + 4He можно получить величи-
ны потерь ядра 3H в четырех последовательных га-

зовых зазорах детектора и попарно их сложить. В то 
же время энергии ядер 4He оказывается недоста-
точно, чтобы преодолеть 1.7 + 2 + 4 + 4 = 11.7  мм 
газа и вызвать ионизацию в последнем четвертом 
активном газовом зазоре детектора, сигнал от ко-
торого запускает триггер события. Результат расче-
тов потерь ядра 3H из данной реакции представлен 
на диаграмме на рис. 5.

Исследуемая реакция n + 10B → 3H + 8Be(2+; 0) 
является двухчастичной, энергии и  углы вылета 
вторичных частиц вычисляются внутри програм-
мы. В  программе разыгрывался равномерным 
распределением косинус угла вылета ядер в с.ц.м. 
и  вычислялись аналитически для каждого собы-
тия энергии и  углы вылета ядер 3H и  8Be* в  л.с. 
из законов сохранения энергии и импульса. Затем 
вычислялись ионизационные потери в  четырех 
чувствительных зазорах детектора, и событие при-
нималось, если ядро 3H проникало в  последний 
четвертый зазор. Корреляция суммы ионизацион-
ных потерь в первых двух зазорах и суммы потерь 
в двух последних зазорах представлена на диаграм-
ме на рис. 6.

Разница в  локализации событий на  рис.  5 
и  рис.  6 для двух реакций оказывается еще более 
выраженной, чем для детектора 100×100 мм2.
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Рис. 4. Позиционно-чувствительный детектор нейтронов с чувствительными размерами 50 × 50 мм2: 1 и 2 — слои 
10B на подложках из кремния; 3 и 4 — Al2O3 керамика-стеклотекстолитовые рамки с проволочками сетки координат 
X1 и Y1; 5 — рамка с 20 мкм проволочками анода A; 6 и 7 — рамки с проволочками сетки координат X2 и Y2.
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Рис. 5. Моделированная диаграмма корреляции ионизационных потерь тритона из реакции n + 10B → 3H + 4He + 4He 
суммы от двух первых и суммы от двух последних зазоров детектора 50 × 50 мм2.
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Рис. 6. Моделированная диаграмма корреляции ионизационных потерь тритона из реакции n + 10B → 3H + 8Be* 
суммы от двух первых и суммы от двух последних зазоров детектора 50 × 50 мм2.
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4. ВЫВОДЫ
Предложен метод выделения событий рождения 

ядра 8Be в реакции взаимодействия нейтрона с ядром 
10B на фоне трехчастичной реакции с вылетом ядра 
3H и двух α-частиц по измерению корреляции иони-
зационных потерь в  двух и  более чувствительных 
газовых зазорах пропорциональной камеры. Лока-
лизация событий с образованием ядра 8Be в выделен-
ной области диаграммы корреляции подтверждается 
в эксперименте с детектором 100 × 100 мм2. Разница 
в локализации событий для двух реакций для нового 
детектора 50 × 50  мм2, содержащего два слоя 10B 
и проволочную систему из двух катодов и двух сеток, 
оказывается более выраженной, чем для детектора 
100 × 100 мм2 с двумя зазорами. Поэтому он обладает 
увеличенной эффективностью и  селективностью 
к исследуемой реакции.

В дальнейшем это позволит расширить круг 
исследований структуры легких ядер, в частности 
ядра 8Be; исследовать вклады переходов различной 
мультипольности в легких ядрах; исследовать кла-
стерную структуру легких ядер, например, 9Be, 10B, 
11B, 12C, 13C; а также выполнить поиск экзотической 
частицы X17, интерпретируемой как “фотон тем-
ной материи”.
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STUDY OF REACTIONS INDUCED BY FAST NEUTRONS  
ON 10B NUCLEUS WITH TRITIUM EMISSION USING  

COORDINATE DETECTOR
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The interaction of fast neutrons with the 10B nucleus at energies from 3 to 7 MeV is studied with the aim of 
isolating the reaction with the production of the 8Be* nucleus in an excited state. This reaction stands out from 
the three-body reaction with the emission of triton and two α-particles. Simulation of ionization losses of 
secondary 3H and 4He nuclei in solid and gas layers of position-sensitive multiwire detectors with sensitive sizes 
both a 100 × 100 and 50 × 50 mm2 showed that events are localized in different areas in diagrams plotted from 
losses in two gas layers. Experimental result with 100 × 100 mm2 detector showed the possibility of isolating a 
reaction with the emission of 3H and 8Be* nuclei.


