- PII
- S0044002725010099-1
- DOI
- 10.31857/S0044002725010099
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 88 / Issue number 1
- Pages
- 73-80
- Abstract
- In the scope of the P2O (Protvino-to-ORCA) experiment it is planned to carry out experiments to determine the neutrino mass hierarchy and to search for the CP-violation in the lepton sector. Previously, various variants of neutrino channels at the U-70 accelerator were considered for these experiments. In this paper, the neutrino beams formed in these channels are considered; their characteristics are compared. Different types of uncertainties in the experiment are considered and their contributions to the measurement error of the CP-violation phase and their comparative analysis has been carried out. This will make it possible to further shape the optimal architecture of planned long-baseline experiments (i.e., to determine the type and characteristics of the beam, detectors, and the required integral intensity of the experiment) at the qualitative level. Also in this work, we calculate the sensitivity of the P2O experiment to the measurement of the CP-violation phase using each of the neutrino beams considered earlier. The choice of the optimal channel variant, which allows us to ensure the maximum sensitivity of the P2O experiment to the planned measurements, is carried out.
- Keywords
- Date of publication
- 10.12.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 67
References
- 1. A. V. Akindinov, E. G. Anassontzis, G. Anton, M. Ardid, J. Aublin, B. Baret, V. Bertin, S. Bourret, C. Bozza, M. Bruchner, R. Bruijn, J. Brunner, M. Chabab, N. Chau, A. S. Chepurnov, M. Colomer Molla, et al., Eur. Phys. J. C 79, 758 (2019).
- 2. J. Hofest¨adt, T. Eberl, and M. Bruchner, in Proceedings of the XXVIII International Conference on Neutrino Physics and Astrophysics (“Neutrino 2018”), June 4–9, 2018, Heidelberg, Germany (2018), https://doi.org/10.5281/zenodo.1292936
- 3. Ф. Н. Новоскольцев, Р. Ю. Синюков, А. А. Соколов, ЯФ 88, 74 (2025).
- 4. Ф. Н. Новоскольцев, Р. Ю. Синюков, А. А. Соколов, Изв. РАН. Сер. физ. 87, 1120 (2023).
- 5. F. N. Novoskoltsev, R. Yu. Sinyukov, and A. A. Sokolov, Phys. At. Nucl. 87, 614 (2024).
- 6. V. N. Goryachev, F. N.Novoskoltsev, R. Yu. Sinyukov, and A. A. Sokolov, Phys. At. Nucl. 87, 799 (2024).
- 7. P. Huber, M. Lindner, and W. Winter, Comput. Phys. Commun. 167, 195 (2005).
- 8. S. Adri´an-Mart´lnez, M. Ageron, F. Aharonian, S. Aiello, A. Albert, F. Ameli, E. Anassontzis, M. Andre, G. Androulakis, M. Anghinolfi, G. Anton, M. Ardid, T. Avgitas, G. Barbarino, E. Barbarito, B. Baret, et al., J. Phys. G 43, 084001 (2016).
- 9. C. Andreopoulos, A. Bell, D. Bhattacharya, F. Cavanna, J. Dobson, S. Dytman, H. Gallagher, P. Guzowski, R. Hatcher, P. Kehayias, A. Meregaglia, D. Naples, G. Pearce, A. Rubbia, M. Whalley, and T. Yang, Nucl. Instrum. Methods A 614, 87 (2010).
- 10. C. Andreopoulos, C. Barry, S. Dytman, H. Gallagher, T. Golan, R. Hatcher, G. Perdue, and J. Yarba, arXiv: 1510.05494 [hep-ph].
- 11. I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler, J. P. Pinheiro, and T. Schwetz, http://www.nu-fit.org/?q=node/294; arXiv: 2410.05380.