Error _selectel_forbidden_access

RAS PhysicsЯдерная физика Physics of Atomic Nuclei

  • ISSN (Print) 0044-0027
  • ISSN (Online) 3034-6282

STATE OF THE ART ON SEARCH FOR ASTROPHYSICAL NEUTRINOS WITH BAIKAL-GVD

PII
S3034628225050022-1
DOI
10.7868/S3034628225050022
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 88 / Issue number 5
Pages
400-410
Abstract
An overview of the experimental results of the Baikal-GVD gigaton-scale deep-sea neutrino telescope during its construction from 2016 to the present, 2025 is presented. According to Baikal-GVD data, over 6 years of observations, the presence of an astrophysical component in the diffuse neutrino flux, measured with cascades in the TeV–PeV energy range, has been confirmed at a level of more than 5σ. We discuss the spectral analysis of the sample of high-energy neutrinos, the galactic origin of neutrinos with energies above 200 TeV, the first results in upper limits on the flux of cosmogenic neutrinos, and real-time data analysis in frame of multimessenger program.
Keywords
высокие энергии нейтрино нейтринные телескопы мультимессенджер
Date of publication
01.02.2026
Year of publication
2026
Number of purchasers
0
Views
16

References

  1. 1. G. Zatsepin and V. Kuzmin, Письма в ЖЭТФ 4, 114 (1966) |ГЕТР Lett. 4, 78 (1966)]
  2. 2. K. Greisen, Phys. Rev. Lett. 16, 748 (1966); https://doi.org/10.1103/PhysRevLett.16.748
  3. 3. V. Berezinsky and G. Zatsepin, Phys. Lett. B 28, 423 (1969); https://doi.org/10.1016/0370-2693 (69)90341-4
  4. 4. Ж.-А. М. Джилкибаев, Г. В. Домогацкий, О. В. Суворова, УФН 185, 531 (2015); doi: 10.3367/UFNr.0185.201505j.0531 |Phys. Usp. 58, 495 (2015)]
  5. 5. A. D. Avrorin, A. V. Avrorin, V. Aynutdinov, R. Bannasch, I. Belolaptikov, D. Bogorodsky, V. Brudanin, N. Budnev, I. Danilchenko, G. Domogatsky, A. Doroshenko, A. Dyachok, Zh. Dzhilkibaev, S. Fialkovsky, A. Gafarov, O. Gaponenko, et al., Nucl. Part. Phys. Proc. 273, 314 (2016); https://doi.org/10.1016/j.nuclphysbps.2015.09.044
  6. 6. А. В. Аврорин, А. Д. Аврорин, В. М. Айнутдинов, Р. Баннаш, З. Бардачова, И. А. Белолаптиков, В. Б. Бруданин, Н. М. Буднев, А. Р. Гафаров, К. В. Голубков, Н. С. Горшков, Т. И. Гресь, Р. Дворницкий, Г. В. Домогацкий, А. А. Дорошенко, Ж.-А. М. Джилкибаев, В. Я. Дик и др., ЯФ 83, 511 (2020); doi: 10.31857/S0044002720060045 [Phys. At. Nucl. 83, 916 (2020)]
  7. 7. V. Berezinsky, in Proceedings of the International Conference Neutrino 77 (1977), p. 177
  8. 8. A. Plavin, Yu. Y. Kovalev, Yu. A. Kovalev, and S. Troitsky, Astrophys. J. 894, 101 (2020); doi: 10.3847/1538-4357/ab86b6d
  9. 9. The IceCube, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S, INTEGRAL, Kanata, Kiso, Kapteyn, Liverpool telescope, Subaru, Swift/NuSTAR, VERITAS, VLA/17B-403 teams, Science 361, eaat1378 (2018); doi: 10.1126/science.aat1378
  10. 10. S. Aiello et al. (KM3NeT Collab.), Nature 638, 376 (2025); Nature 640, E3 (Erratum) (2025); https://doi.org/10.1038/s41586-024-08543-1
  11. 11. S. L. Glashow, J. Iliopoulos, and L. Maiani, Phys. Rev. D 2, 1285 (1970); https://doi.org/10.1103/PhysRevD.2.1285
  12. 12. A. Neronov, F. Oikonomou, and D. Semikoz, arXiv: 2502.12986 [astro-ph.HE]; https://doi.org/10.48550/arXiv.2502.12986
  13. 13. https://ligo.org
  14. 14. A. V. Avrorin et al. (Baikal-GVD Collab.), JETP 134, 399 (2022); https://doi.org/10.1134/S1063776122040148
  15. 15. V. M. Aynutdinov et al. (Baikal-GVD Collab.), Phys. At. Nucl. 86, 989 (2023); https://link.springer.com/article/10.1134/S1063778824010101
  16. 16. Zh.-A.M. Dzhilkibaev et al. (Baikal-GVD Collab.), Phys. At. Nucl. 86, 995 (2023); https://link.springer.com/article/10.1134/S1063778824010162
  17. 17. A. V. Avrorin et al. (Baikal-GVD Collab.), Instrum. Exp. Tech. 63, 551 (2020); doi: 10.1134/S0020441220040107
  18. 18. V.A. Allakhverdyan et al. (Baikal-GVD Collab.), Phys. At. Nucl. 84, 1600 (2021); doi: 10.1134/S1063778821090064
  19. 19. A.V. Avrorin et al. (Baikal-GVD Collab.), Astron. Lett. 47, 94 (2021); https://doi.org/10.1134/S1063773721200018
  20. 20. O.V. Suvorova et al. (Baikal-GVD Collab.), PoS (ICRC2021) 946; https://doi.org/10.22323/1.395.0946
  21. 21. B. Shaybonov et al. (Baikal-GVD Collab.), PoS (ICRC2017) 1046; https://doi.org/10.22323/1.301.1046
  22. 22. A.A. Semeniuk et al. (Baikal-GVD Collab.), Phys. Part. Nucl. Lett. 21, 774 (2024); doi: 10.1134/S1547477124701322
  23. 23. V.A. Allakhverdyan et al. (Baikal-GVD Collab.), Commun. Comput. Inf. Sci. 2241, EISSN 1865-0937 (2024)
  24. 24. M.N. Sorokovikov et al. (Baikal-GVD Collab.), PoS(ICRC2021) 1094; doi: https://doi.org/10.22323/1.395.1094
  25. 25. V.A. Allakhverdyan et al. (Baikal-GVD Collab.), Phys. Rev. D 107, 042005 (2023); https://doi.org/10.1103/PhysRevD.107.042005
  26. 26. V.A. Allakhverdyan et al. (Baikal-GVD Collab.), arXiv: 2507.01893 [astro-ph.HE]; https://doi.org/10.48550/arXiv.2507.01893
  27. 27. M.G. Aartsen et al. (IceCube Collab.), Science 342, 1242856 (2013); doi: 10.1126/science.1242856
  28. 28. V.A. Allakhverdyan et al. (Baikal-GVD Collab.), PoS(ICRC2021) 1144; https://doi.org/10.22323/1.395.1144
  29. 29. V.A. Allakhverdyan et al. (Baikal-GVD Collab.), PoS(ICRC2023) 987; https://doi.org/10.22323/1.444.0987
  30. 30. V.A. Allakhverdyan et al. (Baikal-GVD Collab.), Eur. Phys. J. C 81, 1025 (2021); https://doi.org/10.1140/epjc/s10052-021-09825-y
  31. 31. G.B. Safronov et al. (Baikal-GVD Collab.), PoS (ICRC2025) 1162
  32. 32. V.A. Allakhverdyan et al. (Baikal-GVD Collab.), Mon. Not. Roy. Astron. Soc. 526, 942 (2023); https://doi.org/10.1093/mnras/stad2641
  33. 33. Yu. Yu. Kovalev, A.V. Plavin, and S.V. Troitsky, Astrophys. J. Lett. 940, L41 (2022); doi: 10.3847/2041-8213/aaclaae
  34. 34. V.A. Allakhverdyan et al. (Baikal-GVD Collab.), Mon. Not. Roy. Astron. Soc. 527, 8784 (2024); https://doi.org/10.1093/mnras/stad3653
  35. 35. V.A. Allakhverdyan et al. (Baikal-GVD Collab.), Astrophys. J. 982, 73 (2025); https://doi.org/10.3847/1538-4357/adb630
  36. 36. M. Ackermann, M. Bustamante, L. Lu, N. Otte, M.H. Reno, S. Wissel, M. Ackermann, S.K. Agarwalla, J. Alvarez-Muñiz, R.A. Batista, C.A. Argüelles, M. Bustamante, B.A. Clark, A. Cummings, S. Das, V. Decome, et al., J. High Energy Astrophys. 36, 55 (2022); https://doi.org/10.1016/j.jheap.2022.08.001
  37. 37. V.A. Allakhverdyan et al. (Baikal-GVD Collab.), arXiv: 2507.05769 [astro-ph.HE], acc. PRD
  38. 38. Zh.-A.M. Dzhilkibaev, M.N. Sorokovikov, O.V. Suvorova, and S.V. Troitsky (Baikal-GVD Collab.), PoS(ICRC2025) 1186; https://pos.sissa.it/501/1186
  39. 39. V.A. Allakhverdyan et al. (Baikal-GVD Collab.), J. Phys.: Conf. Ser. 2984, 012023 (2025); doi: 10.1088/1742-6596/2984/1/012023
  40. 40. Zh.-A.M. Dzhilkibaev and O. Suvorova (Baikal-GVD Collab.), ATel 15112 (2021); https://www.astronomerstelegram.org
  41. 41. A.D. Avrorin et al. (Baikal-GVD Collab.), JETP Lett. 108, 787 (2018); https://doi.org/10.1134/S0021364018240025
  42. 42. LVK Collab., https://gracedb.ligo.org/superevents/S250206dm/
  43. 43. Jessie Thwaites at IceCube, https://gen.nasa.gov/circulars/39428
  44. 44. Amanda M. Cook for the CHIME/FBR Collab., ATel 17021 (2025)
  45. 45. LVK Collab., https://gracedb.ligo.org/superevents/S231014r/
  46. 46. V. Ya. Dik and O. Suvorova (Baikal-GVD Collab.), PoS(ICRC2025) 921; https://pos.sissa.it/501/921
  47. 47. Zhi-Peng Ma and Kai Wang, Astrophys. J. 970 (2), 127 (2024); doi: 10.3847/1538-4357/ad5678
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library