- PII
- S3034628225060061-1
- DOI
- 10.7868/S3034628225060061
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 88 / Issue number 6
- Pages
- 475-480
- Abstract
- In case of diboson production in collisions there is a non-negligible probability that some events passing the final selection in data are actually from different overlapping hard-scatter processes occurring within the same bunch-crossing. Such events, that consist of combination of two processes associated with different primary vertices, correspond to so-called pile-up background. Its contribution should be considered in analysis of diboson production at collider experiments. This article discusses an overlay Monte-Carlo approach to obtain a theoretical prediction of the pile-up event count. According to the resulting estimate of the proposed method the impact of the pile-up background can be either subtracted from the data in the region of interest or accounted as an additional systematic uncertainty for the final result.
- Keywords
- адронный коллайдер струи адронов высокая загрузка подавление фонов
- Date of publication
- 01.02.2026
- Year of publication
- 2026
- Number of purchasers
- 0
- Views
- 15
References
- 1. J. Erler and M. Schott, Prog. Part. Nucl. Phys. 106, 68 (2019); https://www.sciencedirect.com/science/article/pii/S0146641019300110
- 2. G. Aad et al. (ATLAS Collab.), JINST 3, S08003 (2008).
- 3. LHC Machine, JINST 3, S08001 (2008).
- 4. A. E. Semushin and E. Y. Soldatov, Phys. At. Nucl. 84, 1976 (2021).
- 5. D. Pyatitzbyantseva and E. Y. Soldatov, J. Phys.: Conf. Ser. 1690, 012167 (2020); https://dx.doi.org/10.1088/1742-6596/1690/1/012167
- 6. M. Aaboud et al. (ATLAS Collab.), JHEP 1812, 010 (2018); arXiv: 1810.04995 [hep-ex].
- 7. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, and T. Stelzer, JHEP 1806, 128 (2018); https://doi.org/10.1007%2Fjhep06%282011%29128
- 8. T. Sjöstrand, S. Ask, J. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C. Rasmussen, and P. Z. Skands, Comput. Phys. Commun. 191, 159 (2015); https://doi.org/10.1016%2Fj.cpc.2015.01.024
- 9. The DELPHES 3 Collab. (J. de Favereau et al.), JHEP 2014, 57 (2014); https://doi.org/10.1007%2Fjhep02%282014%29057
- 10. S. H. Stark, EPJ Web Conf. 141, 03007 (2017); https://doi.org/10.1051/epjconf/201714103007
- 11. A. M. Cooper-Sarkar, arXiv: 2302.11788.
- 12. J. Bellm, S. Gieseke, D. Greilscheid, S. Plätzer, M. Rauch, C. Reuschle, P. Richardson, P. Schichtel, M. H. Seymour, A. Siodmok, A. Wilcock, N. Fischer, M. A. Harrendorf, G. Nail, A. Papaefstathiou, and D. Rauch, Eur. Phys. J. C 76, 196 (2014); http://dx.doi.org/10.1140/epjc/s10052-016-4018-8
- 13. G. Avoni, M. Bruschi, G. Cabras, D. Caforio, N. Dehghanian, A. Floderus, B. Giacobbe, F. Giannuzzi, F. Giorgi, P. Grafström, V. Hedberg, F. L. Manghi, S. Meneghini, J. Pinfold, E. Richards, C. Sbarra, et al., JINST 13, P07017 (2018); https://dx.doi.org/10.1088/1748-0221/13/07/P07017
- 14. G. Aad et al. (ATLAS Collab.), Eur. Phys. J. C 83, 982 (2023); arXiv: 2212.09379 [hep-ex].