Error _selectel_forbidden_access

RAS PhysicsЯдерная физика Physics of Atomic Nuclei

  • ISSN (Print) 0044-0027
  • ISSN (Online) 3034-6282

PILE-UP BACKGROUND ESTIMATION IN DIROSON PRODUCTION BY THE OVERLAY MONTE-CARLO METHOD IN COLLIDER EXPERIMENT

PII
S3034628225060061-1
DOI
10.7868/S3034628225060061
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 88 / Issue number 6
Pages
475-480
Abstract
In case of diboson production in collisions there is a non-negligible probability that some events passing the final selection in data are actually from different overlapping hard-scatter processes occurring within the same bunch-crossing. Such events, that consist of combination of two processes associated with different primary vertices, correspond to so-called pile-up background. Its contribution should be considered in analysis of diboson production at collider experiments. This article discusses an overlay Monte-Carlo approach to obtain a theoretical prediction of the pile-up event count. According to the resulting estimate of the proposed method the impact of the pile-up background can be either subtracted from the data in the region of interest or accounted as an additional systematic uncertainty for the final result.
Keywords
адронный коллайдер струи адронов высокая загрузка подавление фонов
Date of publication
01.02.2026
Year of publication
2026
Number of purchasers
0
Views
15

References

  1. 1. J. Erler and M. Schott, Prog. Part. Nucl. Phys. 106, 68 (2019); https://www.sciencedirect.com/science/article/pii/S0146641019300110
  2. 2. G. Aad et al. (ATLAS Collab.), JINST 3, S08003 (2008).
  3. 3. LHC Machine, JINST 3, S08001 (2008).
  4. 4. A. E. Semushin and E. Y. Soldatov, Phys. At. Nucl. 84, 1976 (2021).
  5. 5. D. Pyatitzbyantseva and E. Y. Soldatov, J. Phys.: Conf. Ser. 1690, 012167 (2020); https://dx.doi.org/10.1088/1742-6596/1690/1/012167
  6. 6. M. Aaboud et al. (ATLAS Collab.), JHEP 1812, 010 (2018); arXiv: 1810.04995 [hep-ex].
  7. 7. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, and T. Stelzer, JHEP 1806, 128 (2018); https://doi.org/10.1007%2Fjhep06%282011%29128
  8. 8. T. Sjöstrand, S. Ask, J. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C. Rasmussen, and P. Z. Skands, Comput. Phys. Commun. 191, 159 (2015); https://doi.org/10.1016%2Fj.cpc.2015.01.024
  9. 9. The DELPHES 3 Collab. (J. de Favereau et al.), JHEP 2014, 57 (2014); https://doi.org/10.1007%2Fjhep02%282014%29057
  10. 10. S. H. Stark, EPJ Web Conf. 141, 03007 (2017); https://doi.org/10.1051/epjconf/201714103007
  11. 11. A. M. Cooper-Sarkar, arXiv: 2302.11788.
  12. 12. J. Bellm, S. Gieseke, D. Greilscheid, S. Plätzer, M. Rauch, C. Reuschle, P. Richardson, P. Schichtel, M. H. Seymour, A. Siodmok, A. Wilcock, N. Fischer, M. A. Harrendorf, G. Nail, A. Papaefstathiou, and D. Rauch, Eur. Phys. J. C 76, 196 (2014); http://dx.doi.org/10.1140/epjc/s10052-016-4018-8
  13. 13. G. Avoni, M. Bruschi, G. Cabras, D. Caforio, N. Dehghanian, A. Floderus, B. Giacobbe, F. Giannuzzi, F. Giorgi, P. Grafström, V. Hedberg, F. L. Manghi, S. Meneghini, J. Pinfold, E. Richards, C. Sbarra, et al., JINST 13, P07017 (2018); https://dx.doi.org/10.1088/1748-0221/13/07/P07017
  14. 14. G. Aad et al. (ATLAS Collab.), Eur. Phys. J. C 83, 982 (2023); arXiv: 2212.09379 [hep-ex].
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library