RAS PhysicsЯдерная физика Physics of Atomic Nuclei

  • ISSN (Print) 0044-0027
  • ISSN (Online) 3034-6282

RADIAL AND TANGENTIAL FRICTION COEFFICIENTS: DERIVATION OF FORMULAS, CALCULATION AND APPLICATION IN SIMULATION OF THE COLLISION PROCESS OF A SPHERICAL PROJECTILE NUCLEUS WITH A DEFORMED TARGET NUCLEUS

PII
S30346282S0044002725040078-1
DOI
10.7868/S3034628225040078
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 88 / Issue number 4
Pages
367-378
Abstract
The issue of accounting for radial and tangential friction in the entrance channel of the nuclear reactions S+U and Ni+U, occurring with an impact parameter not equal to zero, is considered. Reaction are simulated in the approximation of the frozen deformation degrees of freedom of the colliding nuclei. The shape of the target nucleus is elongated, the symmetry axis of the target nucleus is oriented arbitrarily in a plane drawn through the vector of the initial momentum of the projectile nucleus and the center of mass of the target nucleus. The shape of the projectile nucleus remains spherical throughout the entire collision process of the initial nuclei. The paper considers the dynamic evolution of two degrees of freedom of a system, namely, a parameter describing the distance between the centers of mass of colliding nuclei and a parameter describing the orientation of the target nucleus. It is shown that consideration of tangential friction between colliding nuclei makes it possible to get rid of the overestimation of the probability of capture of a projectile nucleus by a target nucleus at high angular momenta. The simulation results are compared with experimental data and with the results of calculations performed in the previous version of the model.
Keywords
Date of publication
17.12.2025
Year of publication
2025
Number of purchasers
0
Views
20

References

  1. 1. D. H. E. Gross, H. Kalinovski, Phys. Rep. 45, 175 (1978).
  2. 2. V. L. Litnevsky, A. L. Litnevsky, G. I. Kosenko, Phys. At. Nucl. 87, 327 (2024).
  3. 3. R. Yanez et al., Phys. Rev. C 82, 054615 (2010).
  4. 4. A. J. Pacheco et al., Phys. Rev. C 45, 2861 (1992).
  5. 5. V. L. Litnevsky, F. A. Ivanyuk, G. I. Kosenko, and S. Chiba, Phys. Rev. C 101, 064616 (2020).
  6. 6. V. L. Litnevsky, F. A. Ivanyuk, G. I. Kosenko, Izv. Saratov Univ. (N. S.), Ser. Phys. 20, 233 (2020).
  7. 7. V. V. Pashkevich, Nucl. Phys. A 169, 275 (1971).
  8. 8. H. Koura, M. Yamada, Nucl. Phys. A 671, 96 (2000).
  9. 9. P. Fröbrich, Phys. Rep. 116, 337 (1984).
  10. 10. J. Marten and P. Fröbrich, Nucl. Phys. A 545, 854 (1992).
  11. 11. C. F. Tsang, Phys. Scripta 10A, 90 (1974).
  12. 12. A. S. Iljinov et al., Nucl. Phys. A 543, 517 (1992).
  13. 13. T. I. Nevzorova and G. I. Kosenko, Phys. At. Nucl. 71, 1373 (2008).
  14. 14. V. V. Volkov, Phys. Part. Nucl. 35, 425 (2004).
  15. 15. E. M. Kozulin et al., Phys. Rev. C 94, 054613 (2016).
  16. 16. K. Nishio et al., Phys. Rev. C 77, 064607 (2008).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library