- PII
- S0044002725010128-1
- DOI
- 10.31857/S0044002725010128
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 88 / Issue number 1
- Pages
- 102-109
- Abstract
- The differential cross sections of the F(α, t)Ne(g. s., 2, 4) reaction studied at the cyclotron of the MSU Institute of Nuclear Physics, tg-angular correlations in the reaction F(α, t)Ne(2) at the energy E = 30.3 MeVand the tensors of the orientation of the multipole moments and the alignments F(θ) of the Ne(2) nucleus reconstructed on their basis are compared with the calculated ones under the assumption of a direct mechanism of proton stripping taking into account the coupling of channels using the Coupled Сhannels Born approximation. A set of calculation parameters necessary for such a reaction mechanism is established and their specific values are determined. The calculated differential cross sections of the reaction F(α, t)Ne for all states of the rotational band agree with the experimental ones at θ < 120∘, where the direct mechanism makes the main contribution. In the same region of θ the calculated F(θ) and F(θ) of the Ne(2) nucleus agree satisfactorily with the experimental ones. It was found that their value at θ < 120∘ is small, so the isotropy of the spin distribution in Ne(2) is not violated. At large angles θ both the experimental and calculated values of F are about 0.5, that indicates a partial violation of this isotropy.
- Keywords
- Date of publication
- 31.10.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 61
References
- 1. А. В. Игнатенко, В. М. Лебедев, Н. В. Орлова, А. В. Спасский, ЯФ 58, 208 (1995) [Phys. At. Nucl. 58, 166 (1995)].
- 2. Н. С. Зеленская, И. Б. Теплов, Характеристики возбужденных состояний ядер и угловые корреляции в ядерных реакциях (Энергоатомиздат, Москва, 1995).
- 3. P. D. Kunz and E. Rost, Comput. Nucl. Phys. 2, 88 (1993); https://doi.org/10.1007/978-1-4613-9335-1_5
- 4. I. J. Tompson, Comput. Phys. Rep. 7, 167 (1988); http://www.fresko.org.uk/
- 5. Г. Р. Хуцишвили, УФН 53, 381 (1954); doi: 10.3367/UFNr.0053.195407b.0381 [Usp. Fiz. Nauk 53, 381 (1954)].
- 6. A. W. Obst and K. W. Kemper, Phys. Rev. C 8, 1682 (1973); https://doi.org/10.1103/PhysRevC.8.1682
- 7. Centre for Photonuclear Experiments Data, http://cdfe.sinp.msu.ru/
- 8. R. A. Radhi, A. A. Alzubadi, and E. M. Rashed, Nucl. Phys. A 947, 12 (2016); https://doi.org/10.1016/j.nuclphysa.2015.12.002
- 9. С. Г. Нильссон, Связанные состояния индивидуальных нуклонов в сильно деформированных ядрах, в кн. Деформация атомных ядер (ИИЛ, Москва, 1958), c. 232 [S. G. Nilsson, Dan. Mat. Fys. Medd. 29, 1 (1955).
- 10. Н. С. Зеленская, Вестн. Моск. ун-та. Сер. Физика. Астрономия 75, 33 (2020) [Moscow Univ. Phys. Bull. 75, 39 (2020)].
- 11. H. A. Jahn and H. Van Wieringer, Pros. Roy. Soс. A 209, 502 (1951); https://doi.org/10.1098/rspa.1951.0222
- 12. T. P. Kriick, N. M. Hintz, and D. Dehnhard, Nucl. Phys. A 216, 549 (1973); doi: 10.1016/03759474(73)90169-3
- 13. D. Y. Pang, W. M. Dean, and A. M. Mukhamedzhanov, Phys. Rev. C 91, 024611 (2015); doi: 10.1103/PhysRevC.91.024611
- 14. А. Эдмонс, Угловые моменты в квантовой механике, в кн. Деформация атомных ядер (ИИЛ, Москва, 1958), c. 305.