- PII
- S0044002725010164-1
- DOI
- 10.31857/S0044002725010164
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 88 / Issue number 1
- Pages
- 137-144
- Abstract
- The evolution of the single-particle characteristics of neutron and proton-excess isotones with the new magic numbers N = 14, 16 in the Z range from 8 to 20 in the dispersive optical model was traced. The calculated energy gaps N = 14 and 16 widened with the increase in excess of protons and neutrons respectively. At the same time, the deviation of half-sum of the single-particle energies of the last predominantly occupied and the first predominantly unoccupied states from the Fermi energy decreased. The widening of the gaps enhanced under the assumption of an increase in the diffuseness of the Hartree–Fock component of the dispersive optical model potential with an increase in the neutron excess over the range of Z numbers considered. The bubble structure manifests clearly in the neutron density distribution of the proton-unstable nucleus Са.
- Keywords
- Date of publication
- 07.11.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 62
References
- 1. M. Goeppert-Mayer, Phys. Rev. 75, 1969 (1949); doi: 10.1103/PhysRev.75.1969
- 2. O. Haxel, J. H. D. Jensen, and H. E. Suess, Phys. Rev. 75, 1766 (1949); doi: 10.1103/PhysRev.75.1766.2
- 3. C. Mahaux and R. Sartor, Adv. Nucl. Phys. 20, 1 (1991); doi: 10.1007/978-1-4613-9910-0_1
- 4. О. В. Беспалова, Е. А. Романовский, Т. И. Спасская, ЯФ 78, 123 (2015) [Phys. At. Nucl. 78, 118 (2015)]; doi: 10.7868/S0044002714120046
- 5. C. R. Hoffman, T. Baumann, D. Bazin, J. Brown, G. Christian, P. A. DeYoung, J. E. Finck, N. Frank, J. Hinnefeld, R. Howes, P. Mears, E. Mosby, S. Mosby, J. Reith, B. Rizzo, W. F. Rogers, et al., Phys. Rev. Lett. 100, 152502 (2008); doi: 10.1103/PhysRevLett.100.152502
- 6. C. R. Hoffman, T. Baumann, D. Bazin, J. Brown, G. Christian, D. H. Denby, P. A. DeYoung, J. E. Finck, N. Frank, J. Hinnefeld, S. Mosby, W. A. Peters, W. F. Rogers, A. Schiller, A. Spyrou, M. J. Scott, et al., Phys. Lett. B 672, 17 (2009); doi: 10.1016/j.physletb.2008.12.066
- 7. L. Lalanne, O. Sorlin, A. Poves, M. Assi´e, F. Hammache, S. Koyama, D. Suzuki, F. Flavigny, V. GirardAlcindor, A. Lemasson, A. Matta, T. Roger, D. Beaumel, Y. Blumenfeld, B. A. Brown, F. De Oliveira Santos, et al., Phys. Rev. Lett. 131, 092501 (2023); doi: 10.1103/PhysRevLett.131.092501
- 8. O. B. Tarasov, D. S. Ahn, D. Bazin, N. Fukuda, A. Gade, M. Hausmann, N. Inabe, S. Ishikawa, N. Iwasa, K. Kawata, T. Komatsubara, T. Kubo, K. Kusaka, D. J. Morrissey, M. Ohtake, H. Otsu, et al., Phys. Rev. Lett. 121, 022501 (2018); doi: 10.1103/PhysRevLett.121.022501
- 9. L. Lalanne, O. Sorlin, A. Poves, M. Assi´e, F. Hammache, S. Koyama, D. Suzuki, F. Flavigny, V. GirardAlcindor, A. Lemasson, A. Matta, T. Roger, D. Beaumel, Y. Blumenfeld, B. A. Brown, F. De Oliveira Santos, et al., Phys. Rev. Lett. 129, 122501 (2022); doi: 10.1103/PhysRevLett.129.122501
- 10. N. Dronchi, D. Weisshaar, B. A. Brown, A. Gade, R. J. Charity, L. G. Sobotka, K. W. Brown, W. Reviol, D. Bazin, P. J. Farris, A. M. Hill, J. Li, B. Longfellow, D. Rhodes, S. N. Paneru, S. A. Gillespie, et al., Phys. Rev. C 107, 034306 (2023); doi: 10.1103/PhysRevC.107.034306
- 11. A. J. Miller, K. Minamisono, A. Klose, D. Garand, C. Kujawa, J. D. Lantis, Y. Liu, B. Maa., P. F. Mantica, W. Nazarewicz, W. N¨ortersh¨auser, S. V. Pineda, P.-G. Reinhard, D. M. Rossi, F. Sommer, C. Sumithrarachchi, et al., Nat. Phys. 15, 432 (2019); doi: 10.1038/s41567-019-0416-9
- 12. J. M. Mueller, R. J. Charity, R. Shane, L. G. Sobotka, S. J. Waldecker, W. H. Dickhoff, A. S. Crowell, J. H. Esterline, B. Fallin, C. R. Howell, C. Westerfeldt, M. Youngs, B. J. Crowe III, and R. S. Pedroni, Phys. Rev. C 83, 064605 (2011); doi: 10.1103/PhysRevC.83.064605
- 13. J. M. VanderKam, G. J. Weisel, and W. Tornow, J. Phys. G: Nucl. Part. Phys. 26, 1787 (2000); doi: 10.1088/0954-3899/26/12/303
- 14. M. Jaminon and C. Mahaux, Nucl. Phys. A 440, 228 (1985); doi: 10.1016/0375-9474(85)90339-2
- 15. A. J. Koning and J. P. Delaroche, Nucl. Phys. A 713, 231 (2003); doi: 10.1016/S0375-9474(02)01321-0
- 16. C. D. Pruitt, J. E. Escher, and R. Rahman, Phys. Rev. C 107, 014602 (2023); doi: 10.1103/PhysRevC.107.014602
- 17. N. Wang, M. Liu, X. Wu, and J. Meng, Phys. Lett. B 734, 215 (2014); doi: 10.1016/j.physletb.2014.05.049
- 18. M. J. Strongman, A. Spyrou, C. R. Hoffman, T. Baumann, D. Bazin, J. Brown, P. A. DeYoung, J. E. Finck, N. Frank, S. Mosby, W. F. Rogers, G. F. Peaslee, W. A. Peters, A. Schiller, S. L. Tabor, and M. Thoennessen, Phys. Rev. C 80, 021302(R) (2009); doi: 10.1103/PhysRevC.80.021302
- 19. Wei-Qiang Ma and Yi-Bin Qian, Chin. Phys. C 46, 014106 (2022); doi: 10.1088/1674-1137/ac3072
- 20. О. В. Беспалова, А. А. Климочкина, ЯФ 87, 100 (2024) [Phys. At. Nucl. 87, 105 (2024)]; doi: 10.31857/S0044002724020065
- 21. O. V. Bespalova, N. A. Fedorov, A. A. Klimochkina, M. L. Markova,T. I. Spasskaya, and T.Yu. Tretyakova, Eur. Phys. J. A 54, 2 (2018); doi: 10.1140/epja/i201812449-x
- 22. J. J. Li, W. H. Long, J. L. Song, and Q. Zhao, Phys. Rev. C 93, 054312 (2016); doi: 10.1103/PhysRevC.93.054312
- 23. J. Bonnard, S. M. Lenzi, and A. P. Zuker, Phys. Rev. Lett. 116, 212501 (2016); doi: 10.1103/PhysRevLett.116.212501