- PII
- S3034628225060059-1
- DOI
- 10.7868/S3034628225060059
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 88 / Issue number 6
- Pages
- 465-474
- Abstract
- We present the results of extensive air shower simulations performed with the PYTHIA 8.3 event generator. Custom software has been developed to model the hadronic and muon components of the EAS. The simulation results obtained with PYTHIA 8.3 were compared to those from CORSIKA-77500 by analyzing the longitudinal and transverse muon distributions and the muon energy spectra in the EAS. The influence of free parameters of hadronization model in PYTHIA 8.3 on measurable EAS characteristics was studied. Additionally, EAS simulations were performed under the assumptions of an excess of heavy mesons and t-quarks in hadronic interactions.
- Keywords
- космические лучи ШАЛ PYTHIA
- Date of publication
- 01.02.2026
- Year of publication
- 2026
- Number of purchasers
- 0
- Views
- 10
References
- 1. D. Heck et al., Forschungszentrum Karlsruhe Report FZKA 6019 (1998).
- 2. N. N. Kalmykov, S. S. Ostapchenko, and A. I. Pavlov, Nucl. Phys. B Proc. Suppl. B 52, 17 (1997).
- 3. S. Ostapchenko, Phys. Rev. D 83, 014018 (2011).
- 4. S. Ostapchenko, Phys. Rev. D 89, 074009 (2014).
- 5. R. S. Fletcher, T. K. Gaisser, P. Lipari, and T. Stanev, Phys. Rev. D 50, 5710 (1994).
- 6. K. Werner, Nucl. Phys. B Proc. Suppl. , 81 (2008).
- 7. T. Pierog and K. Werner, Nucl. Phys. B Proc. Suppl. 196, 102 (2009).
- 8. A. Ferrari, P. Sala, A. Fasso, and J. Ranft, CERN Report 2005-10 (2005).
- 9. A. A. Petrukhin, Nucl. Instrum. Methods Phys. Res. A 742, 228 (2014).
- 10. H. P. Dembinski et al., EPJ Web Conf. 210, 02004 (2019).
- 11. H. P. Dembinski, Phys. At. Nucl. 82, 644 (2020).
- 12. A. A. Petrukhin, Nucl. Phys. B Proc. Suppl. 151, 1, 56 (2006).
- 13. A. A. Petrukhin, Nucl. Phys. B Proc. Suppl. 165, 145 (2007).
- 14. A. A. Petrukhin, PoS (IHEP-LHC-2012) 025.
- 15. A. A. Petrukhin, Nucl. Instrum. Methods Phys. Res. A 692, 228 (2012).
- 16. A. A. Petrukhin, EPJ Web Conf. 99, 12004 (2015).
- 17. A. G. Bogdanov, R. P. Kokoulin, and A. A. Petrukhin, J. Phys.: Conf. Ser. 718, 052029 (2016).
- 18. A. A. Petrukhin and A. G. Bogdanov, EPJ Web Conf. 158, 01003 (2017).
- 19. A. A. Petrukhin, Phys. At. Nucl. 84, 92 (2021).
- 20. A. A. Petrukhin, Moscow Univ. Phys. Bull. 77, 83 (2022).
- 21. J. Albrecht et al., Astrophys. Space Sci. 367, 27 (2022).
- 22. T. Pierog and K. Werner, PoS(ICRC2023) 230.
- 23. ALICE Collab., Phys. Rev. C 99, 064901 (2019).
- 24. ALICE Collab., Nature Phys. 13, 535 (2017).
- 25. C. Bierlich et al.; arXiv: 2203.11601 [hep-ph].
- 26. M. Reininghaus et al., EPJ Web Conf. 283, 05010 (2023).
- 27. R. V. Nikolaenko and A. A. Petrukhin, Phys. At. Nucl. 86, 517 (2023).
- 28. ГОСТ 4401-81, Стандартная атмосфера (ИПК Издательство стандартов, 2004).
- 29. R. Engel et al., Comput. Softw. Big Sci. 3, 2 (2019).
- 30. J. M. Alameddine et al., Astropart. Phys. 166, 103072 (2025).
- 31. T. Sjostrand and M. Utheim, Eur. Phys. J. C 82, 21 (2022).
- 32. C. Bierlich et al., J. High Energy Phys. 2018, 134 (2018).
- 33. R. J. Glauber, Phys. Rev. 100, 242 (1955).
- 34. A. Bialas, M. Bleszynski, and W. Czyz, Nucl. Phys. B 111, 461 (1976).
- 35. D. E. Groom, N. V. Mokhov, and S. I. Striganov, At. Data Nucl. Data Tables 78, 183 (2001).
- 36. B. Andersson, G. Gustafson, and B. Soderberg, Z. Phys. C 20, 317 (1983).
- 37. J. Matthews, Astropart. Phys. 22, 387 (2005).
- 38. R. L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022).