ОФНЯдерная физика Physics of Atomic Nuclei

  • ISSN (Print) 0044-0027
  • ISSN (Online) 3034-6282

ИССЛЕДОВАНИЕ ВЗАИМОДЕЙСТВИЯ СОЛНЕЧНЫХ НЕЙТРИНО С ЯДРАМИ Те И ПРОЕКТ БОЛЬШОГО БАКСАНСКОГО НЕЙТРИННОГО ТЕЛЕСКОПА

Код статьи
S30346282S0044002725040042-1
DOI
10.7868/S3034628225040042
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 88 / Номер выпуска 4
Страницы
345-355
Аннотация
Исследован процесс взаимодействия нейтрино с ядрами теллура 128 и 130 с учетом влияния зарядово-обменных резонансов. В работе представлены расчеты сечения захвата солнечных нейтрино σ() изотопами Те и Те. Использовались как экспериментальные данные по силовым функциям (), полученные в зарядово-обменной реакции (Не, ), так и функции (), рассчитанные в рамках микроскопической теории конечных Ферми-систем. Исследовалось влияние резонансной структуры () на рассчитываемые сечения захвата солнечных нейтрино, и выделены вклады каждого из высоколежащих резонансов в сечение захвата σ(). Рассчитаны вклады всех компонентов солнечного нейтринного спектра. Оценен вклад фоновых солнечных нейтрино в двойной бета-распад ядер Те.
Ключевые слова
солнечные нейтрино захват нейтрино ядрами изотопы теллура Те зарядово-обменные реакции нейтринный телескоп
Дата публикации
17.12.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
27

Библиография

  1. 1. J. A. Formaggio and G. P. Zeller, Rev. Mod. Phys. 84, 1307 (2012).
  2. 2. Дж. Бакал, Нейтринная астрофизика (Мир, Москва, 1993) [J. N. Bahcall, Neutrino Astrophysics (Cambridge Univ. Press, Cambridge, 1989)].
  3. 3. J. Billard, E. Figueroa-Feliciano, and L. Strigari, Phys. Rev. D 89, 023524 (2014).
  4. 4. M. J. Dolinski, A. W. P. Poon, and W. Rodejohann, Ann. Rev. Nucl. Part. Sci. 69, 219 (2019).
  5. 5. D. Frekers and M. Alanssari, Eur. Phys. J. A 54, 177 (2018).
  6. 6. Yu. S. Lutostansky and N. B. Shul’gina, Phys. Rev. Lett. 67, 430 (1991).
  7. 7. Ю. С. Лютостанский, В. Н. Тихонов, ЯФ 81, 515 (2018) [Phys. At. Nucl. 81, 540 (2018)].
  8. 8. Yu. S. Lutostansky, EPJ Web Conf. 194, 02009 (2018).
  9. 9. Ю. С. Лютостанский, ЯФ 82, 440 (2019) [Phys. At. Nucl. 82, 528 (2019)].
  10. 10. Ю. В. Гапонов, Ю. С. Лютостанский, Письма в ЖЭТФ 15, 173 (1972) [JETP Lett. 15, 120 (1972)].
  11. 11. R. R. Doering, A. Galonsky, D. M. Patterson, and G. F. Bertsch, Phys. Rev. Lett. 35, 1691 (1975).
  12. 12. A. Galonsky, R. R. Doering, D. M. Patterson, and H. W. Bertini, Phys. Rev. C 14, 748(R) (1976).
  13. 13. Ю. В. Гапонов, Ю. С. Лютостанский, ЯФ 16, 484 (1972) [Sov. J. Nucl. Phys. 16, 270 (1972)].
  14. 14. Ю. С. Лютостанский, Письма в ЖЭТФ 106, 9 (2017) [JETP Lett. 106, 7 (2017)].
  15. 15. Ю. С. Лютостанский, Г. А. Коротеев, А. Ю. Лютостанский, А. П. Осипенко, В. Н. Тихонов, А. Н. Фазлиахметов, ЭЧАЯ 54, 545 (2023) [Phys. Part. Nucl. 54, 436 (2023)].
  16. 16. M. G. Inghram and J. H. Reynolds, Phys. Rev. 76, 1265 (1949).
  17. 17. M. G. Inghram and J. H. Reynolds, Phys. Rev. 78, 822 (1950).
  18. 18. M. Wang, W. J. Huang, F. G. Kondev, G. Audi, and S. Naimi, Chin. Phys. C 45, 30003 (2021).
  19. 19. A. S. Inácio (on behalf of the SNO+ Collab.), PoS (PANIC2021) 274 (2022).
  20. 20. S. Andringa, E. Arushanova, S. Asahi, M. Askins, D. J. Auty, A. R. Back, Z. Barnard, N. Barros, E. W. Beier, A. Bialek, S. D. Biller, E. Blucher, R. Bonventre, D. Braid, E. Caden, E. Callaghan, et al., Adv. High Energy Phys. 2016, 6194250 (2016).
  21. 21. C. Alduino, K. Alfonso, D. R. Artusa, F. T. Avignone III, O. Azzolini, M. Balata, T. I. Banks, G. Bari, J. W. Beeman, F. Bellini, A. Bersani, D. Biare, M. Biassoni, F. Bragazzi, C. Brofferio, A. Buccheri, et al., JINST 11, P07009 (2016).
  22. 22. D. Q. Adams et al. (CUORE Collab.), Phys. Rev. Lett. 124, 122501 (2020).
  23. 23. D. Q. Adams, C. Alduino, K. Alfonso, F. T. Avignone III, O. Azzolini, G. Bari, F. Bellini, G. Benato, M. Biassoni, A. Branca, C. Brofferio, C. Bucci, J. Camilleri, A. Caminata, A. Campani, L. Canonica, et al., Phys. Rev. Lett. 126, 171801 (2021).
  24. 24. J. Ebert et al. (COBRA Collab.), Phys. Rev. C 94, 024603 (2016).
  25. 25. R. Arnold et al. (NEMO-3 Collab.), Phys. Rev. Lett. 107, 062504 (2011).
  26. 26. N. A. Ushakov, A. N. Fazliakhmetov, A. M. Gangapshev, V. N. Gavrin, T. V. Ibragimova, M. M. Kochkarov, V. V. Kazalov, D. Yu. Kudrin, V. V. Kuzminov, B. K. Lubsandorzhiev, A. D. Lukanov, Yu. M. Malyshkin, G. Ya. Novikova, V. B. Petkov, A. A. Shikhin, A. Yu. Sidorenkov, et al., J. Phys.: Conf. Ser. 1787, 012037 (2021).
  27. 27. P. Puppe, A. Lennarz, T. Adachi, H. Akimune, H. Ejiri, D. Frekers, H. Fujita, Y. Fujita, M. Fujiwara, E. Ganioglu, E.-W. Grewe, K. Hatanaka, R. Hodak, C. Iwamoto, N. T. Khai, A. Okamoto, et al., Phys. Rev. C 86, 044603 (2012).
  28. 28. A. N. Fazliakhmetov, Yu. S. Lutostansky, B. K. Lubsandorzhiev, G. A. Koroteev, A. Yu. Lutostansky, and V. N. Tikhonov, Phys. At. Nucl. 86, 736 (2023).
  29. 29. K. Pham, J. Janecke, D. A. Roberts, M. N. Harakeh, G. P. A. Berg, S. Chang, J. Liu, E. J. Stephenson, B. F. Davis, H. Akimune, and M. Fujiwara, Phys. Rev. C 51, 526 (1995).
  30. 30. A. N. Fazliakhmetov, L. V. Inzhechik, G. A. Koroteev, Yu. S. Lutostansky, V. N. Tikhonov, and A. K. Vyborov, AIP Conf. Proc. 2165, 020015 (2019).
  31. 31. A. Б. Мигдал, Теория конечных ферми-систем и свойства атомных ядер (Наука, Москва, 1983) [A. B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Interscience, New York, 1967)].
  32. 32. Ю. С. Лютостанский, А. П. Осипенко, В. Н. Тихонов, Изв. РАН. Сер. физ. 83, 539 (2019) [Bull. Russ. Acad. Sci.: Phys. 83, 488 (2019)].
  33. 33. Ю. С. Лютостанский, Н. А. Белогорцева, Г. А. Коротеев, А. Ю. Лютостанский, А. П. Осипенко, В. Н. Тихонов, А. Н. Фазлиахметов, ЯФ 85, 409 (2022) [Phys. At. Nucl. 85, 551 (2022)].
  34. 34. Yu. S. Lutostansky, A. N. Fazliakhmetov, G. A. Koroteev, N. V. Klochkova, A. Yu. Lutostansky, A. P. Osipenko, and V. N. Tikhonov, Phys. Lett. B 826, 136905 (2022).
  35. 35. I. N. Borzov, S. A. Fayans, and E. L. Trykov, Nucl. Phys. A 584, 335 (1995).
  36. 36. Ю. С. Лютостанский, ЯФ 83, 34 (2020) [Phys. At. Nucl. 83, 33 (2020)].
  37. 37. A. Arima, Nucl. Phys. A 649, 260 (1999).
  38. 38. Ц. С. By, C. А. Мозковский, Бета-распад (Атомиздат, Москва, 1970) [C. S. Wu and S. A. Moszkowski, Beta Decay (Interscience, New York, 1966)].
  39. 39. M. Behrens and J. Janecke, Elementary Particles, Nuclei and Atom, Landolt-Bornstein Group I: Nuclear Physics and Technology (Springer, 1969), Vol. 4.
  40. 40. A. Н. Фазлиахметов, Ю. С. Лютостанский, Г. А. Коротеев, А. П. Осипенко, В. Н. Тихонов, ЭЧАЯ 54, 668 (2023) [Phys. Part. Nucl. 54, 547 (2023)].
  41. 41. R. L. Workman, V. D. Burkert, V. Crede, et al., Prog. Theor. Exp. Phys. 2022, 083C01 (2022).
  42. 42. J. N. Bahcall, A. M. Serenelli, and S. Basu, Astrophys. J. Lett. 621, L85 (2005).
  43. 43. H. Ejiri and S. R. Elliott, Phys. Rev. C 89, 055501 (2014).
  44. 44. H. Ejiri and S. R. Elliott, Phys. Rev. C 95, 055501 (2017).
  45. 45. D. K. Nadezhin and I. V. Otroshchenko, Sov. Astron. 24, 47 (1980).
  46. 46. A. A. Dzhioev, A. V. Yudin, N. V. Dunina-Barkovskaya, and A. I. Vdovin, MNRAS 527, 7701 (2024).
  47. 47. Ю. С. Лютостанский, А. Н. Фазлиахметов, Г. А. Коротеев, В. Н. Тихонов, Письма в ЖЭТФ (2025) (в печати).
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека